Structural and magnetic properties of CeZnAl3 single crystals

  • Qian Liu
  • Bin Shen
  • Michael Smidman
  • Rui Li
  • ZhiYong Nie
  • XiaoYan Xiao
  • Ye Chen
  • Hanoh LeeEmail author
  • HuiQiu YuanEmail author


We have synthesized single crystals of CeZnAl3, which is a new member of family of Ce-based intermetallics CeTX3 (T=transition metal, X=Si, Ge, Al), crystallizing in the non-centrosymmetric tetragonal BaNiSn3-type structure. Magnetization, specific heat and resistivity measurements all show that CeZnAl3 orders magnetically below around 4.4 K. Furthermore, magnetization measurements exhibit a hysteresis loop at low temperatures and fields, indicating the presence of a ferromagnetic component in the magnetic state. This points to a different nature of the magnetism in CeZnAl3 compared to the other isostructural CeTAl3 compounds. Resistivity measurements under pressures up to 1.8 GPa show a moderate suppression of the ordering temperature with pressure, suggesting that measurements to higher pressures are required to look for quantum critical behavior.


non-centrosymmetric compounds ferromagnetism quantum phase transitions 


  1. 1.
    N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys. 4, 186 (2008), arXiv: 0712.2045.CrossRefGoogle Scholar
  3. 3.
    C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009), arXiv: 0905.2625.ADSCrossRefGoogle Scholar
  4. 4.
    Z. F. Weng, M. Smidman, L. Jiao, X. Lu, and H. Q. Yuan, Rep. Prog. Phys. 79, 094503 (2016), arXiv: 1607.02471.ADSCrossRefGoogle Scholar
  5. 5.
    M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick, Rev. Mod. Phys. 88, 025006 (2016), arXiv: 1502.02898.ADSCrossRefGoogle Scholar
  6. 6.
    A. Steppke, R. Küchler, S. Lausberg, E. Lengyel, L. Steinke, R. Borth, T. Lühmann, C. Krellner, M. Nicklas, C. Geibel, F. Steglich, and M. Brando, Science 339, 933 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Rep. Prog. Phys. 80, 036501 (2017), arXiv: 1609.05953.ADSCrossRefGoogle Scholar
  8. 8.
    N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T. Terashima, Phys. Rev. Lett. 95, 247004 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A. Thamizhavel, E. Yamamoto, T. D. Matsuda, Y. Haga, T. Takeuchi, R. Settai, and Y. Onuki, J. Phys. Soc. Jpn. 75, 043703 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    F. Honda, I. Bonalde, S. Yoshiuchi, Y. Hirose, T. Nakamura, K. Shimizu, R. Settai, and Y. Onuki, Phys. C 470, S543 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    R. Settai, I. Sugitani, Y. Okuda, A. Thamizhavel, M. Nakashima, Y. Onuki, and H. Harima, J. Magn. Magn. Mater. 310, 844 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    H. Wang, J. Guo, E. D. Bauer, V. A. Sidorov, H. Zhao, J. Zhang, Y. Zhou, Z. Wang, S. Cai, K. Yang, A. Li, X. Li, Y. Li, P. Sun, Y. Yang, Q. Wu, T. Xiang, J. D. Thompson, and L. Sun, Phys. Rev. B 97, 064514 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    H. Mukuda, T. Fujii, T. Ohara, A. Harada, M. Yashima, Y. Kitaoka, Y. Okuda, R. Settai, and Y. Onuki, Phys. Rev. Lett. 100, 107003 (2008), arXiv: 0801.3868.ADSCrossRefGoogle Scholar
  14. 14.
    N. Kimura, K. Ito, H. Aoki, S. Uji, and T. Terashima, Phys. Rev. Lett. 98, 197001 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    H. Mukuda, T. Ohara, M. Yashima, Y. Kitaoka, R. Settai, Y. Onuki, K. M. Itoh, and E. E. Haller, Phys. Rev. Lett. 104, 017002 (2010), arXiv: 0912.2805.ADSCrossRefGoogle Scholar
  16. 16.
    Y. Tada, N. Kawakami, and S. Fujimoto, Phys. Rev. Lett. 101, 267006 (2008), arXiv: 0808.0545.ADSCrossRefGoogle Scholar
  17. 17.
    L. P. Gor’kov, and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    S. Paschen, E. Felder, and H. R. Ott, Eur. Phys. J. B 2, 169 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    E. Bauer, N. Pillmayr, E. Gratz, G. Hilscher, D. Gignoux, and D. Schmitt, Z. Phys. B 67, 205 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    D. T. Adroja, C. de la Fuente, A. Fraile, A. D. Hillier, A. Daoud-Aladine, W. Kockelmann, J. W. Taylor, M. M. Koza, E. Burzurí, F. Luis, J. I. Arnaudas, and A. del Moral, Phys. Rev. B 91, 134425 (2015), arXiv: 1501.00286.ADSCrossRefGoogle Scholar
  21. 21.
    M. Klicpera, P. Javorský, P. Cermák, A. Schneidewind, B. Ouladdiaf, and M. Diviš, Phys. Rev. B 91, 224419 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    D. T. Adroja, A. del Moral, C. de la Fuente, A. Fraile, E. A. Goremychkin, J. W. Taylor, A. D. Hillier, and F. Fernandez-Alonso, Phys. Rev. Lett. 108, 216402 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    T. Muranaka, and J. Akimitsu, Phys. C 460-462, 688 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    C. Franz, A. Senyshyn, A. Regnat, C. Duvinage, R. Schönmann, A. Bauer, Y. Prots, L. Akselrud, V. Hlukhyy, V. Baran, and C. Pfleiderer, J. Alloys Compd. 688, 978 (2016).CrossRefGoogle Scholar
  25. 25.
    M. Klicpera, P. Javorský, and M. Diviš, J. Phys.-Conf. Ser. 592, 012014 (2015).CrossRefGoogle Scholar
  26. 26.
    M. Smidman, D. T. Adroja, A. D. Hillier, L. C. Chapon, J. W. Taylor, V. K. Anand, R. P. Singh, M. R. Lees, E. A. Goremychkin, M. M. Koza, V. V. Krishnamurthy, D. M. Paul, and G. Balakrishnan, Phys. Rev. B 88, 134416 (2013), arXiv: 1309.7840.ADSCrossRefGoogle Scholar
  27. 27.
    V. K. Anand, A. D. Hillier, D. T. Adroja, D. D. Khalyavin, P. Manuel, G. Andre, S. Rols, and M. M. Koza, arXiv: 1802.00388.Google Scholar
  28. 28.
    N. Kimura, Y. Muro, and H. Aoki, J. Phys. Soc. Jpn. 76, 051010 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Okuda, Y. Miyauchi, Y. Ida, Y. Takeda, C. Tonohiro, Y. Oduchi, T. Yamada, N. Duc Dung, T. D. Matsuda, Y. Haga, T. Takeuchi, M. Hagiwara, K. Kindo, H. Harima, K. Sugiyama, R. Settai, and Y. Onuki, J. Phys. Soc. Jpn. 76, 044708 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Kawamura, T. Nishioka, H. Kato, M. Matsumura, K. Matsubayashi, and Y. Uwatoko, J. Phys.-Conf. Ser. 200, 012082 (2010).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qian Liu
    • 1
  • Bin Shen
    • 1
  • Michael Smidman
    • 1
  • Rui Li
    • 1
  • ZhiYong Nie
    • 1
  • XiaoYan Xiao
    • 2
  • Ye Chen
    • 1
  • Hanoh Lee
    • 1
    Email author
  • HuiQiu Yuan
    • 1
    • 3
    Email author
  1. 1.Center for Correlated Matter and Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina

Personalised recommendations