Rational design of new phases of tin monosulfide by first-principles structure searches

  • XueTing Wang
  • YuWei Li
  • Yu-Xuan Pang
  • YuanHui Sun
  • Xin-Gang Zhao
  • Jin-Rui WangEmail author
  • LiJun ZhangEmail author


Tin monosulfide (SnS), which is composed of earth-abundant elements, holds promise as useful high-performance solar absorber and thermoelectric material. In addition to the ground-state Pnma phase, a series of metastable phases in different crystalline structures have been reported experimentally or theoretically, yet the phase stability diagrams remain elusive. In this article, we provide a comprehensive materials design study of new phases of SnS using first-principles global optimization structure search calculations. We find that the two-dimensional layered phases are generally more energetically favored than the three-dimensional connected phases. In addition, we discover several new phases with comparable energetics. Four lower-energy phases show clear phonon stabilities evidenced by an absence of imaginary modes. The electronic band structures, carrier transport properties, and absorption spectra of the newly discovered phases are investigated and discussed toward potential applications for solar cells and thermoelectric devices.


tin monosulfide photovoltaic anisotropic effective masses 

Supplementary material

11433_2018_9207_MOESM1_ESM.pdf (3.2 mb)
Supporting Information for “Rational Design of New Phases of Tin Monosulfide by First-principles Structure Searches”


  1. 1.
    D. Vamvuka, Int. J. Energy Res. 35, 835 (2011).CrossRefGoogle Scholar
  2. 2.
    C. Zou, Q. Zhao, G. Zhang, and B. Xiong, Nat. Gas Ind. B 3, 1 (2016).CrossRefGoogle Scholar
  3. 3.
    C. McGlade, and P. Ekins, Nature 517, 187 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    M. Lenzen, Energy Convers. Manage. 49, 2178 (2008).CrossRefGoogle Scholar
  5. 5.
    C. Zarfl, A. E. Lumsdon, J. Berlekamp, L. Tydecks, and K. Tockner, Aquat. Sci. 77, 161 (2015).CrossRefGoogle Scholar
  6. 6.
    B. Lehner, G. Czisch, and S. Vassolo, Energy Policy 33, 839 (2005).CrossRefGoogle Scholar
  7. 7.
    S. A. Sherif, F. Barbir, and T. N. Veziroglu, Sol. Energy 78, 647 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    R. D. Schaller, and V. I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    P. V. Kamat, J. Phys. Chem. C 111, 2834 (2007).CrossRefGoogle Scholar
  10. 10.
    W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy 143, 1 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    P.C. Huang, J. L. Huang, S. C. Wang, M. O. Shaikh, and C. Y. Lin, Thin Solid Films 596, 135 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    R. Guo, X. Wang, Y. Kuang, and B. Huang, Phys. Rev. B 92, 115202 (2015), arXiv: 1505. 02601.ADSCrossRefGoogle Scholar
  13. 13.
    S. Di Mare, D. Menossi, A. Salavei, E. Artegiani, F. Piccinelli, A. Kumar, G. Mariotto, and A. Romeo, Coatings 7, 34 (2017).CrossRefGoogle Scholar
  14. 14.
    J. R. Brent, D. J. Lewis, T. Lorenz, E. A. Lewis, N. Savjani, S. J. Haigh, G. Seifert, B. Derby, and P. O'Brien, J. Am. Chem. Soc. 137, 12689 (2015).CrossRefGoogle Scholar
  15. 15.
    P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, and R. G. Gordon, Adv. Energy Mater. 4, 1400496 (2014).CrossRefGoogle Scholar
  16. 16.
    P. Tang, H. Chen, F. Cao, G. Pan, K. Wang, M. Xu, and Y. Tong, Mater. Lett. 65, 450 (2011).CrossRefGoogle Scholar
  17. 17.
    C. Wang, Y. Chen, J. Jiang, R. Zhang, Y. Niu, T. Zhou, J. Xia, H. Tian, J. Hu, and P. Yang, RSC Adv. 7, 16795 (2017).CrossRefGoogle Scholar
  18. 18.
    S. Hao, V. P. Dravid, M. G. Kanatzidis, and C. Wolverton, APL Mater. 4, 104505 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    F. Ke, J. Yang, C. Liu, Q. Wang, Y. Li, J. Zhang, L. Wu, X. Zhang, Y. Han, B. Wu, Y. Ma, and C. Gao, J. Phys. Chem. C 117, 6033 (2013).CrossRefGoogle Scholar
  20. 20.
    E. Segev, U. Argaman, R. E. Abutbul, Y. Golan, and G. Makov, CrystEngComm 19, 1751 (2017).CrossRefGoogle Scholar
  21. 21.
    R. E. Abutbul, A. R. Garcia-Angelmo, Z. Burshtein, M. T. S. Nair, P. K. Nair, and Y. Golan, CrystEngComm 18, 5188 (2016).CrossRefGoogle Scholar
  22. 22.
    R. E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, and Y. Golan, RSC Adv. 6, 5848 (2016).CrossRefGoogle Scholar
  23. 23.
    P. K. Nair, A. R. Garcia-Angelmo, and M. T. S. Nair, Phys. Status Solidi A 213, 170 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Sun, Z. Zhong, T. Shirakawa, C. Franchini, D. Li, Y. Li, S. Yunoki, and X. Q. Chen, Phys. Rev. B 88, 235122 (2013), arXiv: 1308. 5657.ADSCrossRefGoogle Scholar
  25. 25.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012), arXiv: 1205. 2264.ADSCrossRefGoogle Scholar
  26. 26.
    L. Zhu, H. Wang, Y. Wang, J. Lv, Y. Ma, Q. Cui, Y. Ma, and G. Zou, Phys. Rev. Lett. 106, 145501 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    Q. Li, D. Zhou, W. Zheng, Y. Ma, and C. Chen, Phys. Rev. Lett. 110, 136403 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    J. Lv, Y. Wang, L. Zhu, and Y. Ma, Phys. Rev. Lett. 106, 015503 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma, Phys. Rev. X 7, 019903 (2017).Google Scholar
  30. 30.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010), arXiv: 1008. 3601.ADSCrossRefGoogle Scholar
  31. 31.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  33. 33.
    K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010), arXiv: 1003. 5255.ADSCrossRefGoogle Scholar
  34. 34.
    A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    F. Tran, and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  37. 37.
    A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    G. K. H. Madsen, and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    M. Gajdos, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).ADSCrossRefGoogle Scholar
  40. 40.
    Y. Li, and D. J. Singh, Phys. Rev. Mater. 1, 075402 (2017), arXiv: 1711. 08022.CrossRefGoogle Scholar
  41. 41.
    Y. Li, D. J. Singh, M. H. Du, Q. Xu, L. Zhang, W. Zheng, and Y. Ma, J. Mater. Chem. C 4, 4592 (2016).CrossRefGoogle Scholar
  42. 42.
    Q. Xu, Y. Li, L. Zhang, W. Zheng, D. J. Singh, and Y. Ma, Chem. Mater. 29, 2459 (2017).CrossRefGoogle Scholar
  43. 43.
    S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).ADSCrossRefGoogle Scholar
  44. 44.
    R. E. Brandt, V. Stevanovic, D. S. Ginley, and T. Buonassisi, MRC Commun. 5, 265 (2015).CrossRefGoogle Scholar
  45. 45.
    R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. W. Schock, and B. Dimmler, Sol. Energy Mater. Sol. Cells 49, 227 (1997).CrossRefGoogle Scholar
  46. 46.
    J. Vidal, S. Lany, M. d'Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate, Appl. Phys. Lett. 100, 032104 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    D. Yang, J. Lv, X. Zhao, Q. Xu, Y. Fu, Y. Zhan, A. Zunger, and L. Zhang, Chem. Mater. 29, 524 (2017).CrossRefGoogle Scholar
  48. 48.
    X. G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, and A. Zunger, J. Am. Chem. Soc. 139, 6718 (2017).CrossRefGoogle Scholar
  49. 49.
    X. G. Zhao, J. H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S. H. Wei, and L. Zhang, J. Am. Chem. Soc. 139, 2630 (2017).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Automobile Materials of MOE, and College of Materials Science and EngineeringJilin UniversityChangchunChina
  2. 2.Department of Prosthodontics, School and Hospital of StomatologyJilin UniversityChangchunChina

Personalised recommendations