Advertisement

Micro- and nano-mechanics in China: A brief review of recent progress and perspectives

  • ZhiPing Xu
  • QuanShui ZhengEmail author
Invited Review

Abstract

The past three decades have witnessed the explosion of nanoscience and technology, where notable research efforts have been made in synthesizing nanomaterials and controlling nanostructures of bulk materials. The uncovered mechanical behaviors of structures and materials with reduced sizes and dimensions pose open questions to the community of mechanicians, which expand the framework of continuum mechanics by advancing the theory, as well as modeling and experimental tools. Researchers in China have been actively involved into this exciting area, making remarkable contributions to the understanding of nanoscale mechanical processes, the development of multi-scale, multi-field modeling and experimental techniques to resolve the processing-microstructures-properties relationship of materials, and the interdisciplinary studies that broaden the subjects of mechanics. This article reviews selected progress made by this community, with the aim to clarify the key concepts, methods and applications of micro- and nano-mechanics, and to outline the perspectives in this fast-evolving field.

Keywords

micro- and nano-mechanics multi-scale and multi-field methods nanotechnology nanomaterials nanostructures 

References

  1. 1.
    Y. L. Bai, Q. S. Zheng, and Y. G. Wei, IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials: Proceedings of the IUTAM Symposium, Beijing, China, June 27–30, 2005 (Springer, Dordrecht, 2007).zbMATHGoogle Scholar
  2. 2.
    W. Guo, H. Xie, and Q. Zheng, Acta Mech. Solid Sin. 22, I (2009).Google Scholar
  3. 3.
    Y. Zhao, Nano and Mesoscopic Mechanics (Science Press, Beijing, 2014).Google Scholar
  4. 4.
    Y. Zhao, Physical Mechanics of Surfaces and Interfaces (Science Press, Beijing, 2012).Google Scholar
  5. 5.
    B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).ADSGoogle Scholar
  6. 6.
    J. Z. Liu, Q. Zheng, and Q. Jiang, Phys. Rev. Lett. 86, 4843 (2001).ADSGoogle Scholar
  7. 7.
    Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, and H. Gao, Nat. Commun. 5, 3580 (2014).ADSGoogle Scholar
  8. 8.
    C. Jiang, H. Zhang, J. Song, and Y. Lu, Extreme Mech. Lett. 18, 79 (2018).Google Scholar
  9. 9.
    W. L. Deng, W. Qiu, Q. Li, Y. L. Kang, J. G. Guo, Y. L. Li, and S. S. Han, Exp. Mech. 54, 3 (2014).Google Scholar
  10. 10.
    Z. Xu, in Nano-Engineering of Graphene and Related Materials: Physics and Applications of Graphene-Experiments, edited by S. Mikhailov (InTech, Shanghai, 2011).Google Scholar
  11. 11.
    Z. Zhang, X. Liu, J. Yu, Y. Hang, Y. Li, Y. Guo, Y. Xu, X. Sun, J. Zhou, and W. Guo, WIREs Comput. Mol. Sci. 6, 324 (2016).Google Scholar
  12. 12.
    H. S. Tsien, J. Am. Rocket Soc. 23, 14 (1953).Google Scholar
  13. 13.
    Y. Zhao, Modern Continuum Mechanics (Science Press, Beijing, 2016).Google Scholar
  14. 14.
    Y. Huang, J. Wu, and K. C. Hwang, Phys. Rev. B 74, 245413 (2006).ADSGoogle Scholar
  15. 15.
    E. Gao, and Z. Xu, J. Appl. Mech. 82, 121012 (2015).ADSGoogle Scholar
  16. 16.
    L. Wang, Q. Zheng, J. Z. Liu, and Q. Jiang, Phys. Rev. Lett. 95, 105501 (2005).ADSGoogle Scholar
  17. 17.
    T. Chang, and H. Gao, J. Mech. Phys. Solids 51, 1059 (2003).ADSGoogle Scholar
  18. 18.
    F. Liu, and T. C. Wang, Carbon 96, 1175 (2016).Google Scholar
  19. 19.
    X. Y. Liu, F. C. Wang, and H. A. Wu, Nanotechnology 26, 065701 (2015).ADSGoogle Scholar
  20. 20.
    H. A. Wu, and X. Y. Liu, Carbon 98, 510 (2016).Google Scholar
  21. 21.
    J. W. Wang, Y. P. Cao, and X. Q. Feng, Appl. Phys. Lett. 104, 031910 (2014).ADSGoogle Scholar
  22. 22.
    Y. Liu, Y. Kenry, Y. Guo, S. Sonam, S. K. Hong, M. H. Nai, C. T. Nai, L. Gao, J. Chen, B. J. Cho, C. T. Lim, W. Guo, and K. P. Loh, Adv. Funct. Mater. 25, 5492 (2015).Google Scholar
  23. 23.
    Y. Guo, J. Qiu, and W. Guo, Nanotechnology 27, 505702 (2016).Google Scholar
  24. 24.
    X. Feng, Y. Cao, and B. Li, Surface Wrinkling Mechanics of Soft Materials (Science Press, Beijing, 2018).Google Scholar
  25. 25.
    Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Nano Lett. 13, 26 (2012).ADSGoogle Scholar
  26. 26.
    B. Audoly, and Y. Pomeau, Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells (Oxford University Press, Oxford, 2010).zbMATHGoogle Scholar
  27. 27.
    T. Zhang, X. Li, and H. Gao, J. Mech. Phys. Solids 67, 2 (2014).ADSMathSciNetGoogle Scholar
  28. 28.
    T. Zhang, X. Li, and H. Gao, Extreme Mech. Lett. 1, 3 (2014).Google Scholar
  29. 29.
    J. Chen, B. Wang, and Y. Hu, J. Mech. Phys. Solids 107, 451 (2017).ADSMathSciNetGoogle Scholar
  30. 30.
    X. Y. Liu, F. C. Wang, and H. A. Wu, Appl. Phys. Lett. 103, 071904 (2013).ADSGoogle Scholar
  31. 31.
    J. W. Jiang, and H. S. Park, Nat. Commun. 5, 4727 (2014), arXiv: 1403.4326.ADSGoogle Scholar
  32. 32.
    J. W. Jiang, and H. S. Park, Nano Lett. 16, 2657 (2016), arXiv: 1601.04791.ADSGoogle Scholar
  33. 33.
    X. Liu, D. Pan, Y. Hong, and W. Guo, Phys. Rev. Lett. 112, 205502 (2014).ADSGoogle Scholar
  34. 34.
    Z. Xu, Chin. Sci. Bull. 61, 501 (2015).Google Scholar
  35. 35.
    H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, and X. X. Zhang, Nano Lett. 12, 141 (2012).ADSGoogle Scholar
  36. 36.
    Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, Nat. Mater 11, 759 (2012).ADSGoogle Scholar
  37. 37.
    Z. Song, and Z. Xu, J. Appl. Mech. 81, 091004 (2014).ADSGoogle Scholar
  38. 38.
    Z. Song, V. I. Artyukhov, B. I. Yakobson, and Z. Xu, Nano Lett. 13, 1829 (2013).ADSGoogle Scholar
  39. 39.
    Z. D. Sha, S. S. Quek, Q. X. Pei, Z. S. Liu, T. J. Wang, V. B. Shenoy, and Y. W. Zhang, Sci. Rep. 4, 5991 (2014).ADSGoogle Scholar
  40. 40.
    P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389 (2011), arXiv: 1009.4714.ADSGoogle Scholar
  41. 41.
    H. Zhang, J. Tersoff, S. Xu, H. Chen, Q. Zhang, K. Zhang, Y. Yang, C. S. Lee, K. N. Tu, J. Li, and Y. Lu, Sci. Adv. 2, e1501382 (2016).ADSGoogle Scholar
  42. 42.
    P. Li, C. Jiang, S. Xu, Y. Zhuang, L. Gao, A. Hu, H. Wang, and Y. Lu, Nanoscale 9, 9119 (2017).Google Scholar
  43. 43.
    X. Wei, S. Xiao, F. Li, D. M. Tang, Q. Chen, Y. Bando, and D. Golberg, Nano Lett. 15, 689 (2015).ADSGoogle Scholar
  44. 44.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).ADSGoogle Scholar
  45. 45.
    G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, Science 340, 1073 (2013).ADSGoogle Scholar
  46. 46.
    Z. Song, V. I. Artyukhov, J. Wu, B. I. Yakobson, and Z. Xu, ACS Nano 9, 401 (2015).Google Scholar
  47. 47.
    Z. Song, and Z. Xu, Extreme Mech. Lett. 6, 82 (2016).Google Scholar
  48. 48.
    J. Yang, Y. Wang, Y. Li, H. Gao, Y. Chai, and H. Yao, J. Mech. Phys. Solids 112, 157 (2018).ADSMathSciNetGoogle Scholar
  49. 49.
    H. Yin, H. J. Qi, F. Fan, T. Zhu, B. Wang, and Y. Wei, Nano Lett. 15, 1918 (2015).ADSGoogle Scholar
  50. 50.
    Z. Song, Y. Ni, and Z. Xu, Extreme Mech. Lett. 14, 31 (2017).Google Scholar
  51. 51.
    M. Ren, Y. Liu, J. Zhe Liu, L. Wang, and Q. Zheng, J. Mech. Phys. Solids 88, 83 (2016).ADSGoogle Scholar
  52. 52.
    L. F. Wang, and Q. S. Zheng, Appl. Phys. Lett. 90, 153113 (2007).ADSGoogle Scholar
  53. 53.
    J. Z. Liu, Q. S. Zheng, L. F. Wang, and Q. Jiang, J. Mech. Phys. Solids 53, 123 (2005).ADSGoogle Scholar
  54. 54.
    L. Tang, H. Zhang, X. Wu, and Z. Zhang, Polymer 52, 2070 (2011).Google Scholar
  55. 55.
    Q. Li, Y. L. Kang, W. Qiu, Y. L. Li, G. Y. Huang, J. G. Guo, W. L. Deng, and X. H. Zhong, Nanotechnology 22, 225704 (2011).ADSGoogle Scholar
  56. 56.
    Y. Liu, Z. Xu, and Q. Zheng, J. Mech. Phys. Solids 59, 1613 (2011).ADSMathSciNetGoogle Scholar
  57. 57.
    X. Li, W. Yang, and B. Liu, Phys. Rev. Lett. 98, 205502 (2007).ADSGoogle Scholar
  58. 58.
    H. L. Cox, Br. J. Appl. Phys. 3, 72 (1952).ADSGoogle Scholar
  59. 59.
    Y. Liu, B. Xie, Z. Zhang, Q. Zheng, and Z. Xu, J. Mech. Phys. Solids 60, 591 (2012), arXiv: 1105.0138.ADSMathSciNetGoogle Scholar
  60. 60.
    B. Ji, and H. Gao, Annu. Rev. Mater. Res. 40, 77 (2010).ADSGoogle Scholar
  61. 61.
    W. Yang, and W. Lee, Mesoplasticity and Its Applications (Springer, Berlin, Heidelberg, 2013).Google Scholar
  62. 62.
    X. Li, and K. Lu, Nat. Mater. 16, 700 (2017).ADSGoogle Scholar
  63. 63.
    X. S. Yang, Y. J. Wang, H. R. Zhai, G. Y. Wang, Y. J. Su, L. H. Dai, S. Ogata, and T. Y. Zhang, J. Mech. Phys. Solids 94, 191 (2016).ADSGoogle Scholar
  64. 64.
    X. S. Yang, Y. J. Wang, G. Y. Wang, H. R. Zhai, L. H. Dai, and T. Y. Zhang, Acta Mater. 108, 252 (2016).Google Scholar
  65. 65.
    T. C. Wang, and Z. Duan, Mesoplasticity (Science Press, Beijing, 1995).Google Scholar
  66. 66.
    S. Chen, and T. C. Wang, Micro-Scale Plasticity Mechanics (University of Science and Technology of China Press, Anhui, 2009), p. 280.Google Scholar
  67. 67.
    K. C. Hwang, and Y. Huang, Advanced Solid Mechanics (Tsinghua University Press, Beijing, 2013).Google Scholar
  68. 68.
    X. Li, and H. Gao, Nat. Sci. Rev. 2, 133 (2015).Google Scholar
  69. 69.
    P. Wang, S. Xu, J. Liu, X. Li, Y. Wei, H. Wang, H. Gao, and W. Yang, J. Mech. Phys. Solids 98, 290 (2017).ADSGoogle Scholar
  70. 70.
    M. Huang, J. Tong, and Z. Li, Int. J. Plasticity 54, 229 (2014).Google Scholar
  71. 71.
    Y. Cui, Z. Liu, and Z. Zhuang, Int. J. Plasticity 69, 54 (2015).Google Scholar
  72. 72.
    M. Huang, and Z. Li, J. Mech. Phys. Solids 85, 74 (2015).ADSMathSciNetGoogle Scholar
  73. 73.
    X. Zhou, X. Li, and C. Chen, Acta Mater. 99, 77 (2015).ADSGoogle Scholar
  74. 74.
    A. J. Cao, Y. G. Wei, and S. X. Mao, Appl. Phys. Lett. 90, 151909 (2007).ADSGoogle Scholar
  75. 75.
    H. Zhou, S. Qu, and W. Yang, Model. Simul. Mater. Sci. Eng. 18, 065002 (2010).ADSGoogle Scholar
  76. 76.
    H. Zhou, X. Li, S. Qu, W. Yang, and H. Gao, Nano Lett. 14, 5075 (2014).ADSGoogle Scholar
  77. 77.
    X. Li, Acta Metall. Sin. 50, 219 (2014).Google Scholar
  78. 78.
    L. Zhu, S. Qu, X. Guo, and J. Lu, J. Mech. Phys. Solids 76, 162 (2015).ADSMathSciNetGoogle Scholar
  79. 79.
    H. Zhou, X. Li, Y. Wang, Z. Liu, W. Yang, and H. Gao, Nano Lett. 15, 6082 (2015).ADSGoogle Scholar
  80. 80.
    Y. Zhu, Z. Li, M. Huang, and Y. Liu, Int. J. Plasticity 72, 168 (2015).Google Scholar
  81. 81.
    X. Li, M. Dao, C. Eberl, A. M. Hodge, and H. Gao, MRS Bull. 41, 298 (2016).Google Scholar
  82. 82.
    Y. A. Shin, S. Yin, X. Li, S. Lee, S. Moon, J. Jeong, M. Kwon, S. J. Yoo, Y. M. Kim, T. Zhang, H. Gao, and S. H. Oh, Nat. Commun. 7, 10772 (2016).ADSGoogle Scholar
  83. 83.
    X. Zhang, X. Li, and H. Gao, Acta Mech. Sin. 33, 792 (2017).ADSGoogle Scholar
  84. 84.
    J. Liu, Y. Jin, X. Fang, C. Chen, Q. Feng, X. Liu, Y. Chen, T. Suo, F. Zhao, T. Huang, H. Wang, X. Wang, Y. Fang, Y. Wei, L. Meng, J. Lu, and W. Yang, Sci. Rep. 6, 35345 (2016).ADSGoogle Scholar
  85. 85.
    X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, and Y. Zhu, Proc. Natl. Acad. Sci. 112, 14501 (2015).ADSGoogle Scholar
  86. 86.
    G. Wu, K. C. Chan, L. Zhu, L. Sun, and J. Lu, Nature 545, 80 (2017).ADSGoogle Scholar
  87. 87.
    X. L. Wu, P. Jiang, L. Chen, F. Yuan, and Y. T. Zhu, Proc. Natl. Acad. Sci. 111, 7197 (2014).ADSGoogle Scholar
  88. 88.
    Z. Ma, J. Liu, G. Wang, H. Wang, Y. Wei, and H. Gao, Sci. Rep. 6, 22156 (2016).ADSGoogle Scholar
  89. 89.
    M. Q. Jiang, and L. H. Dai, J. Mech. Phys. Solids 57, 1267 (2009).ADSGoogle Scholar
  90. 90.
    L. Dai, Shear Banding in Bulk Metallic Glasses: Adiabatic Shear Localization: Frontiers and Advances, edited by B. Dodd, and Y. L. Bai, 2nd ed. (Elsevier, London, 2012).Google Scholar
  91. 91.
    C. Li, Y. Wei, and X. Shi, Sci. Rep. 5, 12177 (2015).ADSGoogle Scholar
  92. 92.
    X. Zhou, H. Zhou, X. Li, and C. Chen, J. Mech. Phys. Solids 84, 130 (2015).ADSGoogle Scholar
  93. 93.
    F. C. Li, S. Wang, Q. F. He, H. Zhang, B. A. Sun, Y. Lu, and Y. Yang, J. Mech. Phys. Solids 109, 200 (2017).ADSGoogle Scholar
  94. 94.
    X. Lei, Y. Wei, B. Wei, and W. H. Wang, Acta Mater. 99, 206 (2015).ADSGoogle Scholar
  95. 95.
    B. Ding, and X. Li, J. Appl. Mech. 84, 081005 (2017).ADSGoogle Scholar
  96. 96.
    Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Mater. Today 19, 349 (2016).Google Scholar
  97. 97.
    Z. Zhang, Y. W. Zhang, and H. Gao, Proc. R. Soc. B-Biol. Sci. 278, 519 (2011).Google Scholar
  98. 98.
    Y. Ni, Z. Song, H. Jiang, S. H. Yu, and L. He, J. Mech. Phys. Solids 81, 41 (2015).ADSMathSciNetGoogle Scholar
  99. 99.
    H. L. Gao, Y. B. Zhu, L. B. Mao, F. C. Wang, X. S. Luo, Y. Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y. R. Zheng, L. Xu, L. J. Wang, W. H. Xu, H. A. Wu, and S. H. Yu, Nat. Commun. 7, 12920 (2016).ADSGoogle Scholar
  100. 100.
    L. Liu, W. Ma, and Z. Zhang, Small 7, 1504 (2011).Google Scholar
  101. 101.
    B. Xie, Y. Liu, Y. Ding, Q. Zheng, and Z. Xu, Soft Matter 7, 10039 (2011).ADSGoogle Scholar
  102. 102.
    C. Wang, E. Gao, L. Wang, and Z. Xu, C. R. Mécanique 342, 264 (2014).Google Scholar
  103. 103.
    C. Wang, L. Wang, and Z. Xu, Carbon 64, 237 (2013).Google Scholar
  104. 104.
    Y. Chen, F. Pan, Z. Guo, B. Liu, and J. Zhang, J. Mech. Phys. Solids 84, 395 (2015).ADSGoogle Scholar
  105. 105.
    F. Pan, Y. Chen, and Q. Qin, Mech. Mater. 96, 151 (2016).Google Scholar
  106. 106.
    W. Ma, L. Liu, R. Yang, T. Zhang, Z. Zhang, L. Song, Y. Ren, J. Shen, Z. Niu, W. Zhou, and S. Xie, Adv. Mater. 21, 603 (2009).Google Scholar
  107. 107.
    Q. Li, J. S. Wang, Y. L. Kang, Y. L. Li, Q. H. Qin, Z. L. Wang, and X. H. Zhong, Mater. Sci. Eng.-A 549, 118 (2012).Google Scholar
  108. 108.
    Y. Liu, and Z. Xu, J. Mech. Phys. Solids 70, 30 (2014).ADSGoogle Scholar
  109. 109.
    E. Gao, Y. Cao, Y. Liu, and Z. Xu, ACS Appl. Mater. Interfaces 9, 24830 (2017).Google Scholar
  110. 110.
    K. Wu, Z. Song, L. He, and Y. Ni, Nanoscale 10, 556 (2018).Google Scholar
  111. 111.
    Q. Rong, J. Wang, Y. Kang, Y. Li, and Q. H. Qin, Acta Mech. Solid Sin. 25, 342 (2012).Google Scholar
  112. 112.
    Z. Q. Zhang, B. Liu, Y. Huang, K. C. Hwang, and H. Gao, J. Mech. Phys. Solids 58, 1646 (2010).ADSMathSciNetGoogle Scholar
  113. 113.
    Z. Z. He, F. C. Wang, Y. B. Zhu, H. A. Wu, and H. S. Park, J. Mech. Phys. Solids 101, 133 (2017).ADSGoogle Scholar
  114. 114.
    Z. Zhao, J. Wu, X. Mu, H. Chen, H. J. Qi, and D. Fang, Sci. Adv. 3, e1602326 (2017).ADSGoogle Scholar
  115. 115.
    L. Gao, J. Song, Z. Jiao, W. Liao, J. Luan, J. U. Surjadi, J. Li, H. Zhang, D. Sun, C. T. Liu, and Y. Lu, Adv. Eng. Mater. 20, 1700625 (2018).Google Scholar
  116. 116.
    Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, Add. Manuf. 18, 74 (2017).Google Scholar
  117. 117.
    H. Fu, K. Nan, W. Bai, W. Huang, K. Bai, L. Lu, C. Zhou, Y. Liu, F. Liu, J. Wang, M. Han, Z. Yan, H. Luan, Y. Zhang, Y. Zhang, J. Zhao, X. Cheng, M. Li, J. W. Lee, Y. Liu, D. Fang, X. Li, Y. Huang, Y. Zhang, and J. A. Rogers, Nat. Mater 17, 268 (2018).ADSGoogle Scholar
  118. 118.
    J. Wang, H. L. Duan, Z. P. Huang, and B. L. Karihaloo, Proc. R. Soc. A-Math. Phys. Eng. Sci. 462, 1355 (2006).ADSGoogle Scholar
  119. 119.
    J. Wang, Z. Huang, H. Duan, S. Yu, X. Feng, G. Wang, W. Zhang, and T. Wang, Acta Mech. Solid Sin. 24, 52 (2011).Google Scholar
  120. 120.
    M. E. Gurtin, and A. I. Murdoch, Arch. Rational Mech. Anal. 57, 291 (1975).ADSMathSciNetGoogle Scholar
  121. 121.
    M. E. Gurtin, and A. I. Murdoch, Arch. Rational Mech. Anal. 59, 389 (1975).ADSMathSciNetGoogle Scholar
  122. 122.
    M. E. Gurtin, and A. I. Murdoch, Int. J. Solids Struct. 14, 431 (1978).Google Scholar
  123. 123.
    Y. Zhu, Y. Wei, and X. Guo, J. Mech. Phys. Solids 109, 178 (2017).ADSMathSciNetGoogle Scholar
  124. 124.
    X. Zheng, and L. Zhu, Appl. Phys. Lett. 89, 153110 (2006).ADSGoogle Scholar
  125. 125.
    Z. P. Huang, and J. Wang, Acta Mech. 182, 195 (2006).Google Scholar
  126. 126.
    Z. Huang, and J. Wang, Micromechanics of Nanocomposites with Interface Energy Effect: Handbook of Micromechanics and Nanomechanics, edited by S. Li, and X. L. Gao (CRC Press, Boca Raton, 2013).Google Scholar
  127. 127.
    X. Gao, Z. Huang, J. Qu, and D. Fang, J. Mech. Phys. Solids 66, 59 (2014).ADSMathSciNetGoogle Scholar
  128. 128.
    S. Chen, and Y. Yao, J. Appl. Mech. 81, 121002 (2014).ADSGoogle Scholar
  129. 129.
    Y. Yao, S. Chen, and D. Fang, J. Mech. Phys. Solids 99, 321 (2017).ADSMathSciNetGoogle Scholar
  130. 130.
    D. W. Huang, Int. J. Solids Struct. 45, 568 (2008).Google Scholar
  131. 131.
    G. F. Wang, and X. Q. Feng, Appl. Phys. Lett. 90, 231904 (2007).ADSGoogle Scholar
  132. 132.
    Z. Wang, and Y. Zhao, Acta Mech. Solid Sin. 22, 630 (2009).MathSciNetGoogle Scholar
  133. 133.
    C. W. Lim, and L. H. He, Int. J. Mech. Sci. 46, 1715 (2004).Google Scholar
  134. 134.
    W. X. Zhang, L. X. Li, and T. J. Wang, Comput. Mater. Sci. 41, 145 (2007).Google Scholar
  135. 135.
    W. X. Zhang, and T. J. Wang, Appl. Phys. Lett. 90, 063104 (2007).ADSGoogle Scholar
  136. 136.
    W. X. Zhang, T. J. Wang, and X. Chen, Int. J. Plasticity 26, 957 (2010).Google Scholar
  137. 137.
    H. Chen, X. Liu, and G. Hu, Mech. Mater. 40, 721 (2008).ADSGoogle Scholar
  138. 138.
    H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, J. Mech. Phys. Solids 53, 1574 (2005).ADSMathSciNetGoogle Scholar
  139. 139.
    H. L. Duan, J. Wang, B. L. Karihaloo, and Z. P. Huang, Acta Mater. 54, 2983 (2006).Google Scholar
  140. 140.
    Z. R. Li, C. W. Lim, and L. H. He, Eur. J. Mech. -A/Solids 25, 260 (2006).ADSGoogle Scholar
  141. 141.
    P. Li, Q. Wang, and S. Shi, Comput. Mater. Sci. 50, 3230 (2011).Google Scholar
  142. 142.
    M. Dai, and C. F. Gao, Arch. Appl. Mech. 86, 1295 (2016).ADSGoogle Scholar
  143. 143.
    X. L. Chen, H. S. Ma, L. H. Liang, and Y. G. Wei, Comput. Mater. Sci. 46, 723 (2009).Google Scholar
  144. 144.
    Y. P. Zhao, L. S. Wang, and T. X. Yu, J. Adhes. Sci. Tech. 17, 519 (2003).ADSGoogle Scholar
  145. 145.
    Z. Liu, J. Yang, F. Grey, J. Z. Liu, Y. Liu, Y. Wang, Y. Yang, Y. Cheng, and Q. Zheng, Phys. Rev. Lett. 108, 205503 (2012), arXiv: 1104.3320.ADSGoogle Scholar
  146. 146.
    Q. Zheng, B. Jiang, S. Liu, Y. Weng, L. Lu, Q. Xue, J. Zhu, Q. Jiang, S. Wang, and L. Peng, Phys. Rev. Lett. 100, 067205 (2008), arXiv: 0709.4068.ADSGoogle Scholar
  147. 147.
    W. Wang, S. Dai, X. Li, J. Yang, D. J. Srolovitz, and Q. Zheng, Nat. Commun. 6, 7853 (2015), arXiv: 1506.00536.ADSGoogle Scholar
  148. 148.
    J. Yang, Z. Liu, F. Grey, Z. Xu, X. Li, Y. Liu, M. Urbakh, Y. Cheng, and Q. Zheng, Phys. Rev. Lett. 110, 255504 (2013).ADSGoogle Scholar
  149. 149.
    S. Li, Q. Li, R. W. Carpick, P. Gumbsch, X. Z. Liu, X. Ding, J. Sun, and J. Li, Nature 539, 541 (2016).Google Scholar
  150. 150.
    W. Guo, Y. Guo, H. Gao, Q. Zheng, and W. Zhong, Phys. Rev. Lett. 91, 125501 (2003).ADSGoogle Scholar
  151. 151.
    Z. P. Xu, Q. S. Zheng, Q. Jiang, C. C. Ma, Y. Zhao, G. H. Chen, H. Gao, and G. X. Ren, Nanotechnology 19, 255705 (2008), arXiv: 0709.0989.ADSGoogle Scholar
  152. 152.
    A. Wang, Q. He, and Z. Xu, Europhys. Lett. 112, 60007 (2016), arXiv: 1508.05478.ADSGoogle Scholar
  153. 153.
    Y. L. Chen, B. Liu, X. Q. He, Y. Huang, and K. C. Hwang, Compos. Sci. Tech. 70, 1360 (2010).Google Scholar
  154. 154.
    G. Wang, Z. Dai, Y. Wang, P. H. Tan, L. Liu, Z. Xu, Y. Wei, R. Huang, and Z. Zhang, Phys. Rev. Lett. 119, 036101 (2017).ADSGoogle Scholar
  155. 155.
    G. Wang, Z. Dai, L. Liu, H. Hu, Q. Dai, and Z. Zhang, ACS Appl. Mater. Interfaces 8, 22554 (2016).Google Scholar
  156. 156.
    Z. Dai, G. Wang, L. Liu, Y. Hou, Y. Wei, and Z. Zhang, Compos. Sci. Tech. 136, 1 (2016).Google Scholar
  157. 157.
    Y. Liu, B. Xie, and Z. Xu, J. Mater. Chem. 21, 6707 (2011).Google Scholar
  158. 158.
    Y. Gao, L. Q. Liu, S. Z. Zu, K. Peng, D. Zhou, B. H. Han, and Z. Zhang, ACS Nano 5, 2134 (2011).Google Scholar
  159. 159.
    X. Y. Liu, F. C. Wang, H. A. Wu, and W. Q. Wang, Appl. Phys. Lett. 104, 231901 (2014).ADSGoogle Scholar
  160. 160.
    X. Q. Feng, X. Gao, Z. Wu, L. Jiang, and Q. S. Zheng, Langmuir 23, 4892 (2007).Google Scholar
  161. 161.
    Q. S. Zheng, Y. Yu, and Z. H. Zhao, Langmuir 21, 12207 (2005).Google Scholar
  162. 162.
    P. Lv, Y. Xue, Y. Shi, H. Lin, and H. Duan, Phys. Rev. Lett. 112, 196101 (2014).ADSGoogle Scholar
  163. 163.
    Y. Li, D. Quéré, C. Lv, and Q. Zheng, Proc. Natl. Acad. Sci. 114, 3387 (2017).ADSGoogle Scholar
  164. 164.
    Y. Xiang, S. Huang, P. Lv, Y. Xue, Q. Su, and H. Duan, Phys. Rev. Lett. 119, 134501 (2017).ADSGoogle Scholar
  165. 165.
    Q. Yuan, X. Huang, and Y. P. Zhao, Phys. Fluids 26, 092104 (2014).ADSGoogle Scholar
  166. 166.
    J. Li, X. Zhou, J. Li, L. Che, J. Yao, G. McHale, M. K. Chaudhury, and Z. Wang, Sci. Adv. 3, eaao3530 (2017).Google Scholar
  167. 167.
    C. Lv, C. Yang, P. Hao, F. He, and Q. Zheng, Langmuir 26, 8704 (2010).Google Scholar
  168. 168.
    S. Qiao, S. Li, Q. Li, B. Li, K. Liu, and X. Q. Feng, Langmuir 33, 13480 (2017).Google Scholar
  169. 169.
    Q. Yuan, and Y. P. Zhao, Phys. Rev. Lett. 104, 246101 (2010).ADSGoogle Scholar
  170. 170.
    Y. P. Zhao, Theor. Appl. Mech. Lett. 4, 034002 (2014).Google Scholar
  171. 171.
    Y. P. Zhao, Sci. China-Phys. Mech. Astron. 59, 114631 (2016).Google Scholar
  172. 172.
    Q. Yuan, and Y. P. Zhao, J. Fluid Mech. 716, 171 (2013).ADSGoogle Scholar
  173. 173.
    N. Wei, X. Peng, and Z. Xu, Phys. Rev. E 89, 012113 (2014), arXiv: 1308.5367.ADSGoogle Scholar
  174. 174.
    X. Qin, Q. Yuan, Y. Zhao, S. Xie, and Z. Liu, Nano Lett. 11, 2173 (2011).ADSGoogle Scholar
  175. 175.
    Q. Xie, M. A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel, J. Kong, H. G. Park, and C. Duan, Nat. Nanotech. 13, 238 (2018).ADSGoogle Scholar
  176. 176.
    Y. Xue, Y. Wu, X. Pei, H. Duan, Q. Xue, and F. Zhou, Langmuir 31, 226 (2015).Google Scholar
  177. 177.
    M. Ma, F. Grey, L. Shen, M. Urbakh, S. Wu, J. Z. Liu, Y. Liu, and Q. Zheng, Nat. Nanotech. 10, 692 (2015).ADSGoogle Scholar
  178. 178.
    W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan, and Q. Zheng, Phys. Rev. E 84, 056329 (2011), arXiv: 1108.3788.ADSGoogle Scholar
  179. 179.
    R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, Science 335, 442 (2012), arXiv: 1112.3488.ADSGoogle Scholar
  180. 180.
    B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu, and A. K. Geim, Nature 538, 222 (2016), arXiv: 1606.09051.ADSGoogle Scholar
  181. 181.
    N. Wei, X. Peng, and Z. Xu, ACS Appl. Mater. Interfaces 6, 5877 (2014).Google Scholar
  182. 182.
    Q. Yuan, and Y. P. Zhao, J. Am. Chem. Soc. 131, 6374 (2009).Google Scholar
  183. 183.
    G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, J. Chen, S. Deng, J. Zhou, and W. Guo, Nat. Nanotech. 12, 317 (2017).ADSGoogle Scholar
  184. 184.
    J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou, and W. Guo, Nat. Nanotech. 9, 378 (2014).ADSGoogle Scholar
  185. 185.
    J. Yin, Z. Zhang, X. Li, J. Yu, J. Zhou, Y. Chen, and W. Guo, Nat. Commun. 5, 3582 (2014).ADSGoogle Scholar
  186. 186.
    J. Z. Liu, Q. Zheng, and Q. Jiang, Phys. Rev. B 67, 075414 (2003).ADSGoogle Scholar
  187. 187.
    L. Wang, and H. Hu, Phys. Rev. B 71, 195412 (2005).ADSGoogle Scholar
  188. 188.
    L. Wang, and H. Hu, Proc. R. Soc. A-Math. Phys. Eng. Sci. 470, 20140087 (2014).ADSGoogle Scholar
  189. 189.
    P. Zhang, H. Jiang, Y. Huang, P. H. Geubelle, and K. C. Hwang, J. Mech. Phys. Solids 52, 977 (2004).ADSGoogle Scholar
  190. 190.
    X. Guo, J. B. Wang, and H. W. Zhang, Int. J. Solids Struct. 43, 1276 (2006).Google Scholar
  191. 191.
    T. Chang, J. Geng, and X. Guo, Proc. R. Soc. A-Math. Phys. Eng. Sci. 462, 2523 (2006).ADSGoogle Scholar
  192. 192.
    T. Chang, J. Mech. Phys. Solids 58, 1422 (2010).ADSMathSciNetGoogle Scholar
  193. 193.
    X. Wang, and X. Guo, Comput. Mater. Sci. 55, 273 (2012).Google Scholar
  194. 194.
    X. Wang, and X. Guo, J. Comput. Theor. Nanosci. 10, 154 (2013).Google Scholar
  195. 195.
    B. Liu, Y. Huang, H. Jiang, S. Qu, and K. C. Hwang, Comput. Methods Appl. Mech. Eng. 193, 1849 (2004).ADSGoogle Scholar
  196. 196.
    Y. Zhang, R. Xu, B. Liu, and D. Fang, J. Mech. Phys. Solids 60, 1383 (2012).ADSGoogle Scholar
  197. 197.
    Y. L. Bai, H. Y. Wang, M. F. Xia, and F. J. Ke, Acta Mech. Sin. 24, 111 (2008).ADSMathSciNetGoogle Scholar
  198. 198.
    H. Tan, and W. Yang, Acta Mech. Sin. 10, 150 (1994).ADSGoogle Scholar
  199. 199.
    H. Tan, and W. Yang, Acta Mech. Sin. 10, 237 (1994).ADSGoogle Scholar
  200. 200.
    Y. L. Bai, H. Y. Wang, M. F. Xia, and F. J. Ke, Appl. Mech. Rev. 58, 372 (2005).ADSGoogle Scholar
  201. 201.
    Y. Wei, and G. Xu, Int. J. Plasticity 21, 2123 (2005).Google Scholar
  202. 202.
    B. Wu, L. Liang, H. Ma, and Y. Wei, Comput. Mater. Sci. 57, 2 (2012).Google Scholar
  203. 203.
    B. Liu, H. Jiang, Y. Huang, S. Qu, M. F. Yu, and K. C. Hwang, Phys. Rev. B 72, 035435 (2005).ADSGoogle Scholar
  204. 204.
    H. K. Wang, X. Zhang, and X. M. Qiu, Comput. Mater. Sci. 46, 713 (2009).Google Scholar
  205. 205.
    Y. Liu, H. K. Wang, and X. Zhang, Int. J. Mech. Mater Des. 9, 127 (2013).Google Scholar
  206. 206.
    L. W. Zhang, Z. X. Lei, K. M. Liew, and J. L. Yu, Comput. Methods Appl. Mech. Eng. 273, 1 (2014).ADSGoogle Scholar
  207. 207.
    X. Wang, J. Wang, and X. Guo, Comput. Mater. Sci. 114, 244 (2016).Google Scholar
  208. 208.
    Y. Zhu, J. Wang, Y. Xiang, and X. Guo, J. Mech. Phys. Solids 105, 1 (2017).ADSMathSciNetGoogle Scholar
  209. 209.
    W. Guo, and C. Tang, Int. J. Mult. Comp. Eng. 4, 115 (2006).Google Scholar
  210. 210.
    J. Wu, H. Zhang, and Y. Zheng, Acta Mech. Solid Sin. 28, 235 (2015).Google Scholar
  211. 211.
    J. Lv, K. Yang, H. Zhang, D. Yang, and Y. Huang, Comput. Mater. Sci. 87, 88 (2014).Google Scholar
  212. 212.
    D. Fang, F. Li, B. Liu, Y. Zhang, J. Hong, and X. Guo, Appl. Mech. Rev. 65, 060802 (2013).ADSGoogle Scholar
  213. 213.
    X. Zheng, and D. Wang, Acta Mech. Solid Sin. 23, 579 (2010).Google Scholar
  214. 214.
    Q. Meng, B. Li, T. Li, and X. Q. Feng, J. Mech. Phys. Solids 103, 22 (2017).ADSMathSciNetGoogle Scholar
  215. 215.
    S. Yu, and X. Feng, Damage Mechanics (Tsinghua University Press, Beijing, 1997), p. 327.Google Scholar
  216. 216.
    G. A. Holzapfel, and R. W. Ogden, Mechanics of Biological Tissue (Springer, Berlin, Heidelberg, 2006).Google Scholar
  217. 217.
    X. Xia, Y. Su, Z. Zhong, and G. J. Weng, Int. J. Plasticity 99, 58 (2017).Google Scholar
  218. 218.
    Q. Zheng, and Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002).ADSGoogle Scholar
  219. 219.
    Z. Xu, Q. S. Zheng, and G. Chen, Phys. Rev. B 75, 195445 (2007).ADSGoogle Scholar
  220. 220.
    Z. Guo, T. Chang, X. Guo, and H. Gao, Phys. Rev. Lett. 107, 105502 (2011).ADSGoogle Scholar
  221. 221.
    Z. Guo, T. Chang, X. Guo, and H. Gao, J. Mech. Phys. Solids 60, 1676 (2012).ADSGoogle Scholar
  222. 222.
    T. Chang, Phys. Rev. Lett. 101, 175501 (2008).ADSGoogle Scholar
  223. 223.
    T. Chang, and Z. Guo, Nano Lett. 10, 3490 (2010).ADSGoogle Scholar
  224. 224.
    Y. Guo, and W. Guo, Nanoscale 5, 318 (2013).ADSGoogle Scholar
  225. 225.
    W. Guo, Y. Guo, Z. Zhang, and L. Wang, Acta Mech. Solid Sin. 25, 221 (2012).Google Scholar
  226. 226.
    W. Guo, and Y. Guo, Phys. Rev. Lett. 91, 115501 (2003).ADSGoogle Scholar
  227. 227.
    L. Xu, and S. Shen, Int. J. Appl. Mech. 05, 1350015 (2013).Google Scholar
  228. 228.
    S. Shen, and S. Hu, J. Mech. Phys. Solids 58, 665 (2010).ADSMathSciNetGoogle Scholar
  229. 229.
    X. Fu, C. Su, Q. Fu, X. Zhu, R. Zhu, C. Liu, Z. Liao, J. Xu, W. Guo, J. Feng, J. Li, and D. Yu, Adv. Mater. 26, 2572 (2014).Google Scholar
  230. 230.
    L. Kou, C. Tang, W. Guo, and C. Chen, ACS Nano 5, 1012 (2011).Google Scholar
  231. 231.
    Y. Zheng, B. Wang, and C. H. Woo, Acta Mech. Solid Sin. 22, 524 (2009).Google Scholar
  232. 232.
    Y. Zheng, C. H. Woo, and B. Wang, J. Phys.-Condens. Matter 20, 135216 (2008).ADSGoogle Scholar
  233. 233.
    Y. Zheng, C. H. Woo, and B. Wang, Nano Lett. 8, 3131 (2008).ADSGoogle Scholar
  234. 234.
    W. Chen, Y. Zheng, X. Feng, and B. Wang, J. Mech. Phys. Solids 79, 108 (2015).ADSGoogle Scholar
  235. 235.
    W. Chen, J. Liu, L. Ma, L. Liu, G. L. Jiang, and Y. Zheng, J. Mech. Phys. Solids 111,43 (2018).ADSMathSciNetGoogle Scholar
  236. 236.
    X. Y. Lu, H. Li, and B. Wang, J. Mech. Phys. Solids 59, 1966 (2011).ADSMathSciNetGoogle Scholar
  237. 237.
    Y. Zheng, and C. H. Woo, Nanotechnology 20, 075401 (2009).ADSGoogle Scholar
  238. 238.
    X. Luo, B. Wang, and Y. Zheng, ACS Nano 5, 1649 (2011).Google Scholar
  239. 239.
    W. J. Chen, Y. Zheng, and B. Wang, Sci. Rep. 2, 796 (2012).ADSGoogle Scholar
  240. 240.
    Y. Zheng, and W. J. Chen, Rep. Prog. Phys. 80, 086501 (2017).ADSGoogle Scholar
  241. 241.
    Y. Wang, and Z. Xu, Nat. Commun. 5, 4297 (2014).ADSGoogle Scholar
  242. 242.
    J. Shao, X. Zhang, Y. Chen, and Y. Zheng, npj Comput. Mater. 2, 2 (2016).Google Scholar
  243. 243.
    Y. Suo, and S. Shen, Acta Mech. 226, 3375 (2015).MathSciNetGoogle Scholar
  244. 244.
    X. H. Wang, W. H. Shen, X. F. Huang, J. L. Zang, and Y. P. Zhao, Sci. China-Phys. Mech. Astron. 60, 064612 (2017).ADSGoogle Scholar
  245. 245.
    B. Ding, H. Wu, Z. Xu, X. Li, and H. Gao, Nano Energy 38, 486 (2017).Google Scholar
  246. 246.
    Z. Xu, Sci. Rep. 3, 2914 (2013).ADSGoogle Scholar
  247. 247.
    Y. Suo, and S. Shen, Acta Mech. 223, 29 (2012).MathSciNetGoogle Scholar
  248. 248.
    S. Hu, and S. Shen, Acta Mech. 224, 2895 (2013).MathSciNetGoogle Scholar
  249. 249.
    L. H. He, Acta Mech. Sin. 28, 1203 (2012).ADSGoogle Scholar
  250. 250.
    D. Yang, and L. H. He, Acta Mech. Sin. 31, 672 (2015).ADSMathSciNetGoogle Scholar
  251. 251.
    B. Chen, B. Ji, and H. Gao, Annu. Rev. Biophys. 44, 1 (2015).Google Scholar
  252. 252.
    S. He, Y. Su, B. Ji, and H. Gao, J. Mech. Phys. Solids 70, 116 (2014).ADSMathSciNetGoogle Scholar
  253. 253.
    B. Chen, X. Chen, and H. Gao, Nano Lett. 15, 5525 (2015).ADSGoogle Scholar
  254. 254.
    X. Cao, E. Ban, B. M. Baker, Y. Lin, J. A. Burdick, C. S. Chen, and V. B. Shenoy, Proc. Natl. Acad. Sci. 114, E4549 (2017).Google Scholar
  255. 255.
    B. Cheng, M. Lin, G. Huang, Y. Li, B. Ji, G. M. Genin, V. S. Deshpande, T. J. Lu, and F. Xu, Phys. Life Rev. 22-23, 88 (2017).Google Scholar
  256. 256.
    L. Zhang, Q. Feng, J. Wang, S. Zhang, B. Ding, Y. Wei, M. Dong, J. Y. Ryu, T. Y. Yoon, X. Shi, J. Sun, and X. Jiang, ACS Nano 9, 9912 (2015).Google Scholar
  257. 257.
    J. L. Wang, J. S. Sun, and X. H. Shi, Chin. Sci. Bull. (Chin. Ver.) 60, 1976 (2015).Google Scholar
  258. 258.
    J. Wang, Y. Yang, M. Yu, G. Hu, Y. Gan, H. Gao, and X. Shi, J. Mech. Phys. Solids 112, 431 (2018).ADSMathSciNetGoogle Scholar
  259. 259.
    J. Sun, L. Zhang, J. Wang, Q. Feng, D. Liu, Q. Yin, D. Xu, Y. Wei, B. Ding, X. Shi, and X. Jiang, Adv. Mater. 27, 1402 (2015).Google Scholar
  260. 260.
    M. Yu, J. Wang, Y. Yang, C. Zhu, Q. Su, S. Guo, J. Sun, Y. Gan, X. Shi, and H. Gao, Nano Lett. 16, 7176 (2016).ADSGoogle Scholar
  261. 261.
    J. Qian, J. Lin, G. K. Xu, Y. Lin, and H. Gao, J. Mech. Phys. Solids 101, 197 (2017).ADSMathSciNetGoogle Scholar
  262. 262.
    M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, Nature 524, 204 (2015).ADSGoogle Scholar
  263. 263.
    X. Li, D. Su, and Z. Zhang, Sens. Actuat. A-Phys. 153, 13 (2009).Google Scholar
  264. 264.
    X. Li, X. Ling, L. Sun, L. Liu, D. Zeng, and Q. Zheng, Compos. Part B-Eng. 43, 70 (2012).Google Scholar
  265. 265.
    D. Su, and X. Li, Opt. Lasers Eng. 48, 1076 (2010).ADSGoogle Scholar
  266. 266.
    Y. Kang, and H. Xie, Opt. Lasers Eng. 48, 1045 (2010).Google Scholar
  267. 267.
    L. Wang, Z. Zhang, and X. Han, NPG Asia Mater. 5, e40 (2013).Google Scholar
  268. 268.
    X. Hu, L. Wang, F. Xu, T. Xiao, and Z. Zhang, Carbon 67, 368 (2014).Google Scholar
  269. 269.
    B. Dong, F. Xu, X. Hu, H. Qu, D. Kang, and T. Xiao, Sci. World J. 2014, 1 (2014).Google Scholar
  270. 270.
    X. Zheng, J. Li, and Y. Zhou, Acta Mater. 52, 3313 (2004).Google Scholar
  271. 271.
    A. Ahadi, and Q. Sun, Acta Mater. 90, 272 (2015).Google Scholar
  272. 272.
    J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning (Springer, Berlin, Heidelberg, 2001).zbMATHGoogle Scholar
  273. 273.
    J. Li, Z. Shan, and E. Ma, MRS Bull. 39, 108 (2014).Google Scholar
  274. 274.
    X. Feng, B. D. Yang, Y. Liu, Y. Wang, C. Dagdeviren, Z. Liu, A. Carlson, J. Li, Y. Huang, and J. A. Rogers, ACS Nano 5, 3326 (2011).Google Scholar
  275. 275.
    Y. Wang, Y. Chen, H. Li, X. Li, H. Chen, H. Su, Y. Lin, Y. Xu, G. Song, and X. Feng, ACS Nano 10, 8199 (2016).Google Scholar
  276. 276.
    X. Wei, Q. Zhu, J. Qian, Y. Lin, and V. B. Shenoy, Soft Matter 12, 2537 (2016).ADSGoogle Scholar
  277. 277.
    Y. Liu, H. Du, L. Liu, and J. Leng, Smart Mater. Struct. 23, 023001 (2014).ADSGoogle Scholar
  278. 278.
    J. Leng, and A. K. Lau, Multifunctional Polymer Nanocomposites (CRC Press, Boca Raton, 2010).Google Scholar
  279. 279.
    W. Chen, J. Zheijang Univ.-Sci. 15, 231 (2014).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Mechanics Laboratory and Center for Nano and Micro Mechanics, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations