Surface roughness modulated resistivity in copper thin films

  • HongKang Song
  • Ke XiaEmail author
  • Jiang XiaoEmail author


The surfaces of metallic thin films are never flat. The resistivity in thin films is very different from that in bulk because of the unavoidable rough surfaces. In this study, we apply a quantum-mechanical method to study the resistivity in metallic thin films. The resulting resistivity formula for metallic thin films merely involves two parameters: bulk relaxation time and surface roughness. We use the formula to fit a large number of experimental data sets for copper thin films obtained using different growing methods. With an additional tuning parameter for calibrating the film thickness, the quantum formula can provide a universal fitting to most data with a satisfactory precision, regardless of their growing methods or data source.


thin film thickness dependent resistivity surface roughness 

PACS number(s)

72.10.Fk 72.15.Eb 72.15.Lh 


  1. 1.
    P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, IBM J. Res. Dev. 42, 567 (1998).CrossRefGoogle Scholar
  2. 2.
    W. L. Prater, E. L. Allen, W. Y. Lee, M. F. Toney, A. Kellock, J. S. Daniels, J. A. Hedstrom, and T. Harrell, J. Appl. Phys. 97, 093301 (2005).CrossRefGoogle Scholar
  3. 3.
    S. K. Mukherjee, L. Joshi, and P. K. Barhai, Surf. Coatings Tech. 205, 4582 (2011).CrossRefGoogle Scholar
  4. 4.
    J. J. Diaz Leon, D. M. Fryauf, R. D. Cormia, M. X. M. Zhang, K. Samuels, R. S. Williams, and N. P. Kobayashi, ACS Appl. Mater. Interfaces 8, 022337 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Ghosh, A. Maity, R. Banerjee, and S. B. Majumder, J. Alloys Compd. 692, 108 (2016).CrossRefGoogle Scholar
  6. 6.
    B. Giroire, M. Ali Ahmad, G. Aubert, L. Teule-Gay, D. Michau, J. J. Watkins, C. Aymonier, and A. Poulon-Quintin, Thin Solid Films 643, 53 (2017).CrossRefGoogle Scholar
  7. 7.
    X. Zhang, J. Han, J. J. Plombon, A. P. Sutton, D. J. Srolovitz, and J. J. Boland, Science 357, 397 (2017).CrossRefGoogle Scholar
  8. 8.
    K. Fuchs, and N. F. Mott, Math. Proc. Camb. Phil. Soc. 34, 100 (2008).CrossRefGoogle Scholar
  9. 9.
    E. H. Sondheimer, Adv. Phys. 50, 499 (1952).CrossRefGoogle Scholar
  10. 10.
    A. F. Mayadas, and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).CrossRefGoogle Scholar
  11. 11.
    A. F. Mayadas, R. Feder, and R. Rosenberg, J. Vacuum Sci. Tech. 6, 690 (1969).CrossRefGoogle Scholar
  12. 12.
    Y. Namba, J. Appl. Phys. 39, 6117 (1968).CrossRefGoogle Scholar
  13. 13.
    Y. Namba, Jpn. J. Appl. Phys. 9, 1326 (1970).CrossRefGoogle Scholar
  14. 14.
    Z. Tešanović, M. V. Jarić, and S. Maekawa, Phys. Rev. Lett. 57, 2760 (1986).CrossRefGoogle Scholar
  15. 15.
    N. Trivedi, and N. W. Ashcroft, Phys. Rev. B 38, 12298 (1988).CrossRefGoogle Scholar
  16. 16.
    J. W. Lim, K. Mimura, and M. Isshiki, Appl. Surf. Sci. 217, 95 (2003).CrossRefGoogle Scholar
  17. 17.
    L. Zhou, V. L. Grigoryan, S. Maekawa, X. Wang, and J. Xiao, Phys. Rev. B 91, 045407 (2015), arXiv: 1407.8310.CrossRefGoogle Scholar
  18. 18.
    V. L. Grigoryan, J. Xiao, X. Wang, and K. Xia, Phys. Rev. B 96, 144426 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Jalochowski, and E. Bauer, Phys. Rev. B 38, 5272 (1988).CrossRefGoogle Scholar
  20. 20.
    O. Pfennigstorf, A. Petkova, Z. Kallassy, and M. Henzler, Eur. Phys. J. B 30, 111 (2002).CrossRefGoogle Scholar
  21. 21.
    M. Jałochowski, R. Zdyb, and M. C. Tringides, Phys. Rev. Lett. 116, 086101 (2016).CrossRefGoogle Scholar
  22. 22.
    M. C. Tringides, M. Jałochowski, and E. Bauer, Phys. Today 60, 50 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. Ke, F. Zahid, V. Timoshevskii, K. Xia, D. Gall, and H. Guo, Phys. Rev. B 79, 155406 (2009).CrossRefGoogle Scholar
  24. 24.
    Y. N. Zhao, S. X. Qu, and K. Xia, J. Appl. Phys. 110, 075414R (2011).Google Scholar
  25. 25.
    A. A. Solovyev, V. A. Semenov, V. O. Oskirko, K. V. Oskomov, A. N. Zakharov, and S. V. Rabotkin, Thin Solid Films 631, 72 (2017).CrossRefGoogle Scholar
  26. 26.
    E. V. Barnat, D. Nagakura, and T. M. Lu, Rev. Sci. Instrum. 74, 3385 (2003).CrossRefGoogle Scholar
  27. 27.
    P. Y. Zheng, R. P. Deng, and D. Gall, Appl. Phys. Lett. 105, 042116 (2014).Google Scholar
  28. 28.
    E. Shahriari, and M. Ghasemi Varnamkhasti, Superlattices Micro- Struct. 75, 523 (2014).CrossRefGoogle Scholar
  29. 29.
    E. V. Barnat, P. I. Wang, D. Nagakura, and T. M. Lu, MRS Proc. 721, 73 (2002).CrossRefGoogle Scholar
  30. 30.
    E. V. Barnat, D. Nagakura, P. I. Wang, and T. M. Lu, J. Appl. Phys. 91, 1667 (2002).CrossRefGoogle Scholar
  31. 31.
    H. Marom, and M. Eizenberg, J. Appl. Phys. 99, 123705 (2006).CrossRefGoogle Scholar
  32. 32.
    W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, Microelectron. Eng. 76, 146 (2004).CrossRefGoogle Scholar
  33. 33.
    K. Mech, R. Kowalik, and P. Zabinski, Archiv. Metall. Mate. 56, 903 (2011).Google Scholar
  34. 34.
    F. Cemin, D. Lundin, D. Cammilleri, T. Maroutian, P. Lecoeur, and T. Minea, J. Vacuum Sci. Tech. A-Vacuum Surf.s Films 34, 051506 (2016).CrossRefGoogle Scholar
  35. 35.
    Y. Hanaoka, K. Hinode, K. Takeda, and D. Kodama, Mater. Trans. 43, 1621 (2002).CrossRefGoogle Scholar
  36. 36.
    J. M. Camacho, and A. I. Oliva, Microelectron. J. 36, 555 (2005).CrossRefGoogle Scholar
  37. 37.
    J. Vancea, H. Hoffmann, and K. Kastner, Thin Solid Films 121, 201 (1984).CrossRefGoogle Scholar
  38. 38.
    U. Jacob, J. Vancea, and H. Hoffmann, Phys. Rev. B 41, 11852 (1990).CrossRefGoogle Scholar
  39. 39.
    H. D. Liu, Y. P. Zhao, G. Ramanath, S. P. Murarka, and G. C. Wang, Thin Solid Films 384, 151 (2001).CrossRefGoogle Scholar
  40. 40.
    Y. P. Timalsina, A. Horning, R. F. Spivey, K. M. Lewis, T. S. Kuan, G. C. Wang, and T. M. Lu, Nanotechnology 26, 075704 (2015).CrossRefGoogle Scholar
  41. 41.
    Y. P. Timalsina, X. Shen, G. Boruchowitz, Z. Fu, G. Qian, M. Yamaguchi, G. C. Wang, K. M. Lewis, and T. M. Lu, Appl. Phys. Lett. 103, 191602 (2013).CrossRefGoogle Scholar
  42. 42.
    I. V. Antonets, L. N. Kotov, S. V. Nekipelov, and Y. A. Golubev, Tech. Phys. 49, 306 (2004).CrossRefGoogle Scholar
  43. 43.
    S. M. Rossnagel, and T. S. Kuan, J. Vac. Sci. Technol. B 22, 240 (2004).CrossRefGoogle Scholar
  44. 44.
    J. W. Lim, and M. Isshiki, J. Appl. Phys. 99, 094909 (2006).CrossRefGoogle Scholar
  45. 45.
    Y. Lantasov, R. Palmans, and K. Maex, Microelectron. Eng. 50, 441 (2000).CrossRefGoogle Scholar
  46. 46.
    X. Cui, D. A. Hutt, and P. P. Conway, Thin Solid Films 520, 6095 (2012).CrossRefGoogle Scholar
  47. 47.
    T. Hara, Y. Shimura, and K. Namiki, Jpn. J. Appl. Phys. 44, L408 (2005).CrossRefGoogle Scholar
  48. 48.
    J. R. Shi, S. P. Lau, Z. Sun, X. Shi, B. K. Tay, and H. S. Tan, Surf. Coat. Tech. 138, 250 (2001).CrossRefGoogle Scholar
  49. 49.
    Z. Li, and R. Gordon, Chem. Vap. Deposition 12, 435 (2010).CrossRefGoogle Scholar
  50. 50.
    S. K. Pandian, Preparation and Characterization of Titanium Based Coatings by DC Magnetron Sputtering Process, Dissertation for Master Degree (Tampere University of Technology, Finland, 2016), pp. 39–61.Google Scholar
  51. 51.
    A. Y. Cho, and J. R. Arthur, Prog. Solid State Chem. 10, 157 (1975).CrossRefGoogle Scholar
  52. 52.
    G. Dehm, M. Rühle, G. Ding, and R. Raj, Philos. Mag. B 71, 1111 (1995).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Normal UniversityBeijingChina
  2. 2.Department of Physics and State Key Laboratory of Surface PhysicsFudan UniversityShanghaiChina
  3. 3.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina

Personalised recommendations