Advertisement

GaZn-VZn acceptor complex defect in Ga-doped ZnO

  • AiHua Tang
  • ZengXia MeiEmail author
  • YaoNan Hou
  • LiShu Liu
  • Vishnukanthan Venkatachalapathy
  • Alexander Azarov
  • Andrej Kuznetsov
  • XiaoLong DuEmail author
Article

Abstract

Gallium (Ga)-doped ZnO is regarded as a promising plasmonic material with a wide range of applications in plasmonics. In this study, zinc self-diffusion experiments are adopted to disclose the nature of the dominant compensating defect in Ga-doped ZnO isotopic heterostructures. The (GaZn-VZn) complex defect, instead of the isolated VZn2−, is identified as the predominant compensating acceptor center responsible for the low donor doping efficiency. The comparative diffusion experiments operated by the secondary ion mass spectrometry reveal a ~0.78 eV binding energy of this complex defect, which well matches the electrical activation energy derived from the temperature-dependent Hall effect measurements (~(0.82±0.02) eV). These findings contribute to an essential understanding of the (GaZn-VZn) complex defect and the potential engineering routes of heavily Ga-doped ZnO.

Keywords

Ga-doped ZnO complex defect self-diffusion 

Supplementary material

11433_2018_9195_MOESM1_ESM.pdf (592 kb)
Supplemental Material for GaZn-VZn acceptor complex defect in Ga-doped ZnO

References

  1. 1.
    K. Ellmer, Nat. Photon. 6, 809 (2012).CrossRefGoogle Scholar
  2. 2.
    T. Minami, Semicond. Sci. Technol. 20, S35 (2005).CrossRefGoogle Scholar
  3. 3.
    P. D. C. King, and T. D. Veal, J. Phys.-Condens. Matter 23, 334214 (2011).CrossRefGoogle Scholar
  4. 4.
    P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Laser Photon. Rev. 4, 795 (2010).CrossRefGoogle Scholar
  5. 5.
    D. C. Look, and K. D. Leedy, Appl. Phys. Lett. 102, 182107 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, Appl. Phys. Lett. 102, 181905 (2013).CrossRefGoogle Scholar
  7. 7.
    H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, Appl. Phys. Lett. 102, 171103 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Kalusniak, S. Sadofev, and F. Henneberger, Phys. Rev. Lett. 112, 137401 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, Phys. Rev. Lett. 115, 147401 (2015).CrossRefGoogle Scholar
  10. 10.
    D. C. Look, K. D. Leedy, L. Vines, B. G. Svensson, A. Zubiaga, F. Tuomisto, D. R. Doutt, and L. J. Brillson, Phys. Rev. B 84, 115202 (2011).CrossRefGoogle Scholar
  11. 11.
    D. O. Demchenko, B. Earles, H. Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, Phys. Rev. B 84, 075201 (2011).CrossRefGoogle Scholar
  12. 12.
    J. T-Thienprasert, S. Rujirawat, W. Klysubun, J. N. Duenow, T. J. Coutts, S. B. Zhang, D. C. Look, and S. Limpijumnong, Phys. Rev. Lett. 110, 055502 (2013).CrossRefGoogle Scholar
  13. 13.
    J. Stehr, K. Johansen, T. Bjørheim, L. Vines, B. Svensson, W. Chen, and I. Buyanova, Phys. Rev. Appl. 2, 021001 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Janotti, and C. G. van de Walle, Phys. Rev. B 76, 165202 (2007).CrossRefGoogle Scholar
  15. 15.
    P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).CrossRefGoogle Scholar
  16. 16.
    R. Vidya, P. Ravindran, H. Fjellvåg, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, Phys. Rev. B 83, 045206 (2011).CrossRefGoogle Scholar
  17. 17.
    P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, and H. B. Pan, Nucl. Instrum. Methods Phys. Res. Sect. B 199, 286 (2003).CrossRefGoogle Scholar
  18. 18.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. 20, 561 (2010).CrossRefGoogle Scholar
  19. 19.
    F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow, Phys. Rev. B 72, 085206 (2005).CrossRefGoogle Scholar
  20. 20.
    D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).CrossRefGoogle Scholar
  21. 21.
    S. J. Clark, J. Robertson, S. Lany, and A. Zunger, Phys. Rev. B 81, 115311 (2010).CrossRefGoogle Scholar
  22. 22.
    A. Azarov, V. Venkatachalapathy, Z. Mei, L. Liu, X. Du, A. Galeckas, E. Monakhov, B. G. Svensson, and A. Kuznetsov, Phys. Rev. B 94, 195208 (2016).CrossRefGoogle Scholar
  23. 23.
    L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q. K. Xue, and X. Du, Phys. Rev. B 93, 235305 (2016), arXiv: 1603.02831CrossRefGoogle Scholar
  24. 24.
    L. Wang, L. Hsu, E. E. Haller, J. W. Erickson, A. Fischer, K. Eberl, and M. Cardona, Phys. Rev. Lett. 76, 2342 (1996).CrossRefGoogle Scholar
  25. 25.
    H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81, 393 (1998).CrossRefGoogle Scholar
  26. 26.
    H. Bracht, S. P. Nicols, W. Walukiewicz, J. P. Silveira, F. Briones, and E. E. Haller, Nature 408, 69 (2000).CrossRefGoogle Scholar
  27. 27.
    L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, Appl. Phys. Lett. 98, 022106 (2011).CrossRefGoogle Scholar
  28. 28.
    B. Z. Dong, H. Hu, G. J. Fang, X. Z. Zhao, D. Y. Zheng, and Y. P. Sun, J. Appl. Phys. 103, 073711 (2008).CrossRefGoogle Scholar
  29. 29.
    P. Erhart, and K. Albe, Phys. Rev. B 73, 115207 (2006).CrossRefGoogle Scholar
  30. 30.
    J. Y. Noh, H. Kim, Y. S. Kim, and C. H. Park, J. Appl. Phys. 113, 153703 (2013).CrossRefGoogle Scholar
  31. 31.
    G. W. Tomlins, J. L. Routbort, and T. O. Mason, J. Appl. Phys. 87, 117 (2000).CrossRefGoogle Scholar
  32. 32.
    P. Erhart, and K. Albe, Appl. Phys. Lett. 88, 201918 (2006).CrossRefGoogle Scholar
  33. 33.
    H. Schmidt, M. Gupta, and M. Bruns, Phys. Rev. Lett. 96, 055901 (2006).CrossRefGoogle Scholar
  34. 34.
    M. A. N. Nogueira, W. B. Ferraz, and A. C. S. Sabioni, Mat. Res. 6, 167 (2003).CrossRefGoogle Scholar
  35. 35.
    J. C. Fisher, J. Appl. Phys. 22, 74 (1951).CrossRefGoogle Scholar
  36. 36.
    G. W. Tomlins, J. L. Routbort, and T. O. Mason, J. Am. Ceram. Soc. 81, 869 (1998).CrossRefGoogle Scholar
  37. 37.
    R. Kube, H. Bracht, E. Hüger, H. Schmidt, J. L. Hansen, A. N. Larsen, J. W. Ager, E. E. Haller, T. Geue, and J. Stahn, Phys. Rev. B 88, 085206 (2013).CrossRefGoogle Scholar
  38. 38.
    Y. Ke, S. Lany, J. J. Berry, J. D. Perkins, P. A. Parilla, A. Zakutayev, T. Ohno, R. O’Hayre, and D. S. Ginley, Adv. Funct. Mater. 24, 2875 (2014).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • AiHua Tang
    • 1
    • 3
  • ZengXia Mei
    • 1
    Email author
  • YaoNan Hou
    • 1
  • LiShu Liu
    • 1
  • Vishnukanthan Venkatachalapathy
    • 2
  • Alexander Azarov
    • 2
  • Andrej Kuznetsov
    • 2
  • XiaoLong Du
    • 1
    • 3
    Email author
  1. 1.Key Laboratory for Renewable Energy, Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Physics, Centre for Materials Science and NanotechnologyUniversity of OsloOsloNorway
  3. 3.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations