Advertisement

Improving optomechanical gyroscopes by coherent quantum noise cancellation processing

  • Kai Li
  • Sankar Davuluri
  • Yong LiEmail author
Article

Abstract

Coherent quantum noise cancellation (CQNC) method is used to beat standard quantum limit (SQL) for improving the performance of quantum optomechanical gyroscopes. The protocol for realizing CQNC is achieved by constructing an effective negative mass mechanical oscillator, which is simulated by an ancillary cavity. This oscillator shows an antiresponse relative to that of a real mechanical oscillator. Thus, the optomechanical back-action noise is counteracted or restrained, and we could increase our signal by increasing the coupling strength without increasing the noise.

Keywords

CQNC optomechanics gyroscope 

References

  1. 1.
    L. Zhao, L. Yan, J. H. Cheng, and X. Z. Wang, in: The Research of Inertial Navigation System Based on Submarine Space Motion: IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application (IEEE, Wuhan, 2008), pp. 751–755.Google Scholar
  2. 2.
    H. Zhao, Z. Xiong, L. Shi, F. Yu, and J. Liu, Aerosp Sci. Tech. 58, 629 (2016).CrossRefGoogle Scholar
  3. 3.
    S. M. Bezick, A. J. Pue, and C. M. Patzelt, Johns Hopkins APL Tech. Digest 28, 331 (2010).Google Scholar
  4. 4.
    P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (Artech House Press, Boston, 2013).zbMATHGoogle Scholar
  5. 5.
    W. Wrigley, and W. M. Hollister, Science 149, 713 (1965).CrossRefGoogle Scholar
  6. 6.
    J. R. Kwapisz, G. M. Weiss, and S. A. Moore, SIGKDD Explor. Newsl. 12, 74 (2011).CrossRefGoogle Scholar
  7. 7.
    B. S. Davis, in: Using Low-cost MEMS Accelerometers and Gyroscopes as Strapdown IMUs on Rolling Projectiles: Proceeding of IEEE Position Location and Navigation Symposium, 20-23 April 1996, CA, USA, (IEEE, 1998), pp. 594–601.Google Scholar
  8. 8.
    A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, Nat. Photon 6, 768 (2012), arXiv: 1203.5730.CrossRefGoogle Scholar
  9. 9.
    A. Lawrence, Modern Inertial Technology (Springer Press, Berlin, 1993).CrossRefGoogle Scholar
  10. 10.
    M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer Press, Berlin, 2010).zbMATHGoogle Scholar
  11. 11.
    S. Murugesan, and P. S. Goel, IEEE Trans. Aerosp. Electron. Syst. 25, 302 (1989).CrossRefGoogle Scholar
  12. 12.
    G. Rizzi, and M. L. Ruggiero, Gen. Relat. Gravit. 35, 2129 (2003).CrossRefGoogle Scholar
  13. 13.
    S. E. Alper, Y. Temiz, and T. Akin, J. Microelectromech. Syst. 17, 1418 (2008).CrossRefGoogle Scholar
  14. 14.
    K. Azgin, Y. Temiz, and T. Akin, in: An SOI-MEMS Tuning Fork Gyroscope with Linearly Coupled Drive Mechanism: IEEE 20th International Conference on Micro Electro Mechanical Systems, 21-25 Jan. 2007, Hyogo, Japan, (IEEE, Hyogo, 2007), pp. 111–114.Google Scholar
  15. 15.
    C. Acar, and A. Shkel, MEMS Vibratory Gyroscope (Springer Press, Berlin, 2009).CrossRefGoogle Scholar
  16. 16.
    M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.CrossRefGoogle Scholar
  17. 17.
    M. Gao, F. C. Lei, C. G. Du, and G. L. Long, Sci. China-Phys. Mech. Astron. 59, 610301 (2016), arXiv: 1506.05611.CrossRefGoogle Scholar
  18. 18.
    C. Jiang, Z. Y. Zhai, Y. S. Cui, and G. B. Chen, Sci. China-Phys. Mech. Astron. 60, 010311 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Y. Zhao, and Y. B. Gao, Sci. China-Phys. Mech. Astron. 59, 680321 (2016), arXiv: 1603.00215.CrossRefGoogle Scholar
  20. 20.
    P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, Light Sci. Appl. 5, e16092 (2016).CrossRefGoogle Scholar
  21. 21.
    Q. Lin, B. He, and M. Xiao, Phys. Rev. A 96, 043812 (2017), arXiv: 1710.02680.CrossRefGoogle Scholar
  22. 22.
    Y. P. Gao, T. J. Wang, C. Cao, S. C. Mi, D. Yang, Y. Zhang, and C. Wang, IEEE Photonics J. 9, 1 (2017).Google Scholar
  23. 23.
    J. Aasi, et al. (The LIGO Scientific Collaboration), Nat. Photon 7, 613 (2013), arXiv: 1310.0383.CrossRefGoogle Scholar
  24. 24.
    G. Zhao, K. Özdemir, T. Wang, L. Xu, E. King, G. L. Long, and L. Yang, Sci. Bull. 62, 875 (2017).CrossRefGoogle Scholar
  25. 25.
    J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, Nat. Nanotech 4, 820 (2009), arXiv: 0906.1212.CrossRefGoogle Scholar
  26. 26.
    S. Davuluri, Phys. Rev. A 94, 013808 (2016).CrossRefGoogle Scholar
  27. 27.
    S. Davuluri, and Y. Li, New J. Phys. 18, 103047 (2016).CrossRefGoogle Scholar
  28. 28.
    S. Davuluri, K. Li, and Y. Li, New J. Phys. 19, 113004 (2017).CrossRefGoogle Scholar
  29. 29.
    M. Tsang, and C. M. Caves, Phys. Rev. Lett. 105, 123601 (2010), arXiv: 1006.1005.CrossRefGoogle Scholar
  30. 30.
    M. J. Woolley, and A. A. Clerk, Phys. Rev. A 87, 063846 (2013), arXiv: 1304.4059.CrossRefGoogle Scholar
  31. 31.
    M. Tsang, and C. M. Caves, Phys. Rev. X 2, 031016 (2012), arXiv: 1203.2317.Google Scholar
  32. 32.
    V. B. Braginsky, and F. Y. Khalili, Rev. Mod. Phys. 68, 1 (1996).CrossRefGoogle Scholar
  33. 33.
    F. Bariani, H. Seok, S. Singh, M. Vengalattore, and P. Meystre, Phys. Rev. A 92, 043817 (2015), arXiv: 1508.02322.CrossRefGoogle Scholar
  34. 34.
    M. H. Wimmer, D. Steinmeyer, K. Hammerer, and M. Heurs, Phys. Rev. A 89, 053836 (2014), arXiv: 1403.2992.CrossRefGoogle Scholar
  35. 35.
    G. S. Agarwal, Phys. Rev. Lett. 97, 023601 (2006).CrossRefGoogle Scholar
  36. 36.
    J. Zhang, C. Ye, F. Gao, and M. Xiao, Phys. Rev. Lett. 101, 233602 (2008), arXiv: 0811.0161.CrossRefGoogle Scholar
  37. 37.
    G. S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, 2013).zbMATHGoogle Scholar
  38. 38.
    J. P. Gazeau, T. Koide, and R. Murenzi, arXiv: 1704.02832.Google Scholar
  39. 39.
    R. Loudon, and P. L. Knight, J. Modern Opt. 34, 709 (1987).MathSciNetCrossRefGoogle Scholar
  40. 40.
    A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010), arXiv: 0810.4729.CrossRefGoogle Scholar
  41. 41.
    M. F. Zaman, A. Sharma, A. Zhili Hao, and F. Ayazi, J. Microelectromech. Syst. 17, 1526 (2008).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Computational Science Research CenterBeijingChina
  2. 2.Synergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal UniversityChangshaChina

Personalised recommendations