Advertisement

Dense matter with eXTP

  • Anna L. WattsEmail author
  • WenFei Yu
  • Juri Poutanen
  • Shu Zhang
  • Sudip Bhattacharyya
  • Slavko Bogdanov
  • Long Ji
  • Alessandro Patruno
  • Thomas E. Riley
  • Pavel Bakala
  • Altan Baykal
  • Federico Bernardini
  • Ignazio Bombaci
  • Edward Brown
  • Yuri Cavecchi
  • Deepto Chakrabarty
  • Jérôme Chenevez
  • Nathalie Degenaar
  • Melania Del Santo
  • Tiziana Di Salvo
  • Victor Doroshenko
  • Maurizio Falanga
  • Robert D. Ferdman
  • Marco Feroci
  • Angelo F. Gambino
  • MingYu Ge
  • Svenja K. Greif
  • Sebastien Guillot
  • Can Gungor
  • Dieter H. Hartmann
  • Kai Hebeler
  • Alexander Heger
  • Jeroen Homan
  • Rosario Iaria
  • Jean in’t Zand
  • Oleg Kargaltsev
  • Aleksi Kurkela
  • XiaoYu Lai
  • Ang Li
  • XiangDong Li
  • ZhaoSheng Li
  • Manuel Linares
  • FangJun Lu
  • Simin Mahmoodifar
  • Mariano Méndez
  • M. Coleman Miller
  • Sharon Morsink
  • Joonas Nättilä
  • Andrea Possenti
  • Chanda Prescod-Weinstein
  • JinLu Qu
  • Alessandro Riggio
  • Tuomo Salmi
  • Andrea Sanna
  • Andrea Santangelo
  • Hendrik Schatz
  • Achim Schwenk
  • LiMing Song
  • Eva Šrámková
  • Benjamin Stappers
  • Holger Stiele
  • Tod Strohmayer
  • Ingo Tews
  • Laura Tolos
  • Gabriel Török
  • David Tsang
  • Martin Urbanec
  • Andrea Vacchi
  • RenXin Xu
  • YuPeng Xu
  • Silvia Zane
  • GuoBao Zhang
  • ShuangNan Zhang
  • WenDa Zhang
  • ShiJie Zheng
  • Xia Zhou
Invited Review

Abstract

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.

Keywords

neutron X-rays dense matter equation of state 

Notes

Acknowledgments

ALW and TER acknowledge support from ERC Starting (Grant No. 639217 CSINEUTRONSTAR). AP acknowledges support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship. YC is suported by the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Global Fellowship (Grant No. 703916). SKG, KH and AS are supported in part by the DFG through Grant SFB 1245 and the ERC (Grant No. 307986 STRONGINT). The Chinese team acknowledges the support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)

References

  1. 1.
    A. De Rosa, P. Uttley, L. J. Gou, Y. Liu, C. Bambi, D. Barret, T. Belloni, E. Berti, S. Bianchi, I. Caiazzo, P. Casella, M. Feroci, V. Ferrari, L. Gualtieri, J. Heyl, A. Ingram, V. Karas, F. J. Lu, B. Luo, G. Matt, S. Motta, J. Neilsen, P. Pani, A. Santangelo, X. W. Shu, J. F. Wang, J.-M. Wang, Y. Q. Xue, Y. P. Xu, W. M. Yuan, Y. F. Yuan, S.-N. Zhang, S. Zhang, I. Agudo, L. Amati, N. Andersson, C. Baglio, P. Bakala, A. Baykal, S. Bhattacharyya, I. Bombaci, N. Bucciantini, F. Capitanio, R. Ciolfi, W. K. Cui, F. D’Ammando, T. Dauser, M. Del Santo, B. De Marco, T. Di Salvo, C. Done, M. Dovčiak, A. C. Fabian, M. Falanga, A. F. Gambino, B. Gendre, V. Grinberg, A. Heger, J. Homan, R. Iaria, J. C. Jiang, C. C. Jin, E. Koerding, M. Linares, Z. Liu, T. J. Maccarone, J. Malzac, A. Manousakis, F. Marin, A. Marinucci, M. Mehdipour, M. Méndez, S. Migliari, C. Miller, G. Miniutti, E. Nardini, P. T. O’Brien, J. P. Osborne, P. O. Petrucci, A. Possenti, A. Riggio, J. Rodriguez, A. Sanna, L. J. Shao, M. Sobolewska, E. Sramkova, H. Stiele, G. Stratta, Z. Stuchlik, J. Svoboda, F. Tamburini, T. M. Tauris, F. Tombesi, G. Torok, M. Urbanec, F. Vincent, Q. W. Wu, F. Yuan, J. J. M. in’t Zand, A. A. Zdziarski, and X. L. Zhou, Sci. China-Phys. Mech. Astron. 62, 029504 (2019).Google Scholar
  2. 2.
    A. Santangelo, S. Zane, H. Feng, R. X. Xu, V. Doroshenko, E. Bozzo, I. Caiazzo, F. C. Zelati, P. Esposito, D. González-Caniulef, J. Heyl, D. Huppenkothen, G. Israel, Z. S. Li, L. Lin, R. Mignani, N. Rea, M. Orlandini, R. Taverna, H. Tong, R. Turolla, C. Baglio, F. Bernardini, N. Bucciantini, M. Feroci, F. Fürst, E. Göğüş, C. Güngör, L. Ji, F. J. Lu, A. Manousakis, S. Mereghetti, R. Mikusincova, B. Paul, C. Prescod-Weinstein, G. Younes, A. Tiengo, Y. P. Xu, A. Watts, S. Zhang, and S.-N. Zhang, Sci. China-Phys. Mech. Astron. 62, 029505 (2019).Google Scholar
  3. 3.
    J. J. M. in’t Zand, E. Bozzo, J. L. Qu, X.-D. Li, L. Amati, Y. Chen, I. Donnarumma, V. Doroshenko, S. A. Drake, M. Hernanz, P. A. Jenke, T. J. Maccarone, S. Mahmoodifar, D. de Martino, A. De Rosa, E. M. Rossi, A. Rowlinson, G. Sala, G. Stratta, T. M. Tauris, J. Wilms, X. F. Wu, P. Zhou, I. Agudo, D. Altamirano, J.-L. Atteia, N. A. Andersson, M. C. Baglio, D. R. Ballantyne, A. Baykal, E. Behar, T. Belloni, S. Bhattacharyya, S. Bianchi, A. Bilous, P. Blay, J. Braga, S. Brandt, E. F. Brown, N. Bucciantini, L. Burderi, E. M. Cackett, R. Campana, S. Campana, P. Casella, Y. Cavecchi, F. Chambers, L. Chen, Y.-P. Chen, J. Chenevez, M. Chernyakova, C. C. Jin, R. Ciolfi, E. Costantini, A. Cumming, A. D’Aì, Z.-G. Dai, F. D’Ammando, M. De Pasquale, N. Degenaar, M. Del Santo, V. D’Elia, T. Di Salvo, G. Doyle, M. Falanga, X. L. Fan, R. D. Ferdman, M. Feroci, F. Fraschetti, D. K. Galloway, A. F. Gambino, P. Gandhi, M. Y. Ge, B. Gendre, R. Gill, D. Götz, C. Gouiffès, P. Grandi, J. Granot, M. Güdel, A. Heger, C. O. Heinke, J. Homan, R. Iaria, K. Iwasawa, L. Izzo, L. Ji, P. G. Jonker, J. José, J. S. Kaastra, E. Kalemci, O. Kargaltsev, N. Kawai, L. Keek, S. Komossa, I. Kreykenbohm, L. Kuiper, D. Kunneriath, G. Li, E.-W. Liang, M. Linares, F. Longo, F. J. Lu, A. A. Lutovinov, D. Malyshev, J. Malzac, A. Manousakis, I. McHardy, M. Mehdipour, Y. P. Men, M. Méndez, R. P. Mignani, R. Mikusincova, M. C. Miller, G. Miniutti, C. Motch, J. Nättilä, E. Nardini, T. Neubert, P. T. O’Brien, M. Orlandini, J. P. Osborne, L. Pacciani, S. Paltani, M. Paolillo, I. E. Papadakis, B. Paul, A. Pellizzoni, U. Peretz, M. A. P. Torres, E. Perinati, C. Prescod-Weinstein, P. Reig, A. Riggio, J. Rodriguez, P. Rodríguez- Gil, P. Romano, A. Rózańska, T. Sakamoto, T. Salmi, R. Salvaterra, A. Sanna, A. Santangelo, T. Savolainen, S. Schanne, H. Schatz, L. J. Shao, A. Shearer, S. N. Shore, B. W. Stappers, T. E. Strohmayer, V. F. Suleimanov, J. Svoboda, F.-K. Thielemann, F. Tombesi, D. F. Torres, E. Torresi, S. Turriziani, A. Vacchi, S. Vercellone, J. Vink, J.-M Wang, J. F Wang, A. L. Watts, S. S. Weng, N. N. Weinberg, P. J. Wheatley, R. Wijnands, T. E. Woods, S. E. Woosley, S. L. Xiong, Y. Xu, Z. Yan, G. Younes, W. F. Yu, F. Yuan, L. Zampieri, S. Zane, A. A. Zdziarski, S.-N. Zhang, S. Zhang, S. Zhang, X. Zhang, and M. Zingale, Sci. China-Phys. Mech. Astron. 62, 029506 (2019)Google Scholar
  4. 4.
    S. N. Zhang, A. Santangelo, M. Feroci, Y. P. Xu, F. J. Lu, Y. Chen, H. Feng, S. Zhang, L. Baldini, E. Bozzo, S. Brandt, Y. W. Dong, Y. Evangelista, M. Hernanz, V. Karas, N. Meidinger, A. Meuris, K. Nandra, T. Pan, G. Pareschi, P. Orleanski, Q. S. Huang, S. Schanne, G. Sironi, D. Spiga, J. Svoboda, G. Tagliaferri, C. Tenzer, A. Vacchi, S. Zane, D. Walton, Z. S. Wang, B. Winter, X. Wu, J. J. M. in’ t Zand, M. Ahangarianabhari, G. Ambrosi, F. Ambrosino, M. Barbera, S. Basso, J. Bayer, R. Bellazzini, P. Bellutti, B. Bertucci, G. Bertuccio, G. Borghi, X. L. Cao, F. Cadoux, R. Campana, F. Ceraudo, T. X. Chen, Y. P. Chen, J. Chevenez, M. Civitani, W. W. Cui, A. De Rosa, E. Del Monte, S. Di Cosimo, S. Diebold, V. Doroshenko, M. Dovciak, Y. Y. Du, Q. M. Fan, Y. Favre, F. Fuschino, J. L. Gálvez, M. Gao, M. Y. Ge, O. Gevin, M. Grassi, Q. Y. Gu, Y. D. Gu, D. W. Han, B. Hong, W. Hu, L. Ji, S. M. Jia, W. C. Jiang, T. Kennedy, I. Kuvvetli, C. Labanti, L. Latronico, G. Li, M. S. Li, X. Li, W. Li, Z. W. Li, O. Limousin, H. W. Liu, X. J. Liu, B. Lu, T. Luo, D. Macera, P. Malcovati, A. Martindale, M. Michalska, B. Meng, M. Minuti, A. Morbidini, F. Muleri, S. Paltani, E. Perinati, A. Picciotto, C. Piemonte, J. L. Qu, A. Rachevski, I. Rashevskaya, J. Rodriguez, T. Schanz, Z. X. Shen, L. Z. Sheng, J. B. Song, L. M. Song, C. Sgro, L. Sun, Y. Tan, P. Uttley, B. Wang, D. L. Wang, G. F. Wang, J. Wang, L. P. Wang, Y. S. Wang, A. L. Watts, X. Y.Wen, S. L. Xiong, J. W. Yang, S. Yang, Y. J. Yang, N. Yu, W. D. Zhang, G. Zampa, N. Zampa, A. A. Zdziarski, A. M. Zhang, C. M. Zhang, F. Zhang, L. Zhang, T. Zhang, Y. Zhang, X. L. Zhang, Z. L. Zhang, B. S. Zhao, S. J. Zheng, Y. P. Zhou, N. Zorzi, and J. F. Zwart, Sci. China-Phys. Mech. Astron. 62, 029502 (2019).Google Scholar
  5. 5.
    A. L. Watts, N. Andersson, D. Chakrabarty, M. Feroci, K. Hebeler, G. Israel, F. K. Lamb, M. C. Miller, S. Morsink, F. Özel, A. Patruno, J. Poutanen, D. Psaltis, A. Schwenk, A. W. Steiner, L. Stella, L. Tolos, and M. van der Klis, Rev. Mod. Phys. 88, 021001 (2016), arXiv: 1602.01081.Google Scholar
  6. 6.
    K. Fukushima, and T. Hatsuda, Rep. Prog. Phys. 74, 014001 (2011), arXiv: 1005.4814.Google Scholar
  7. 7.
    K. Hebeler, J. D. Holt, J. Menndez, and A. Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015), arXiv: 1508.06893.Google Scholar
  8. 8.
    N. K. Glendenning, Astrophys. J. 293, 470 (1985).Google Scholar
  9. 9.
    D. Chatterjee, and I. Vida˜na, Eur. Phys. J. A 52, 29 (2016), arXiv: 1510.06306. 2 029503-15Google Scholar
  10. 10.
    N. K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, (Springer Verlag, Berlin, 1996).zbMATHGoogle Scholar
  11. 11.
    I. Bombaci, D. Logoteta, I. Vida˜na, and C. Providência, Eur. Phys. J. A 52, 58 (2016), arXiv: 1601.04559.Google Scholar
  12. 12.
    A. Watts, R. X. Xu, C. Espinoza, N. Andersson, J. Antoniadis, D. Antonopoulou, S. Buchner, S. Dai, P. Demorest, P. Freire, J. Hessels, J. Margueron, M. Oertel, A. Patruno, A. Possenti, S. Ransom, I. Stairs, and B. Stappers, in Probing the neutron star interior and the Equation of State of cold dense matter with the SKA: Advancing Astrophysics with the Square Kilometre Array (AASKA14), (2015), p. 43.Google Scholar
  13. 13.
    M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Rev. Mod. Phys. 80, 1455 (2008), arXiv: 0709.4635.Google Scholar
  14. 14.
    R. Anglani, R. Casalbuoni, M. Ciminale, N. Ippolito, R. Gatto, M. Mannarelli, and M. Ruggieri, Rev. Mod. Phys. 86, 509 (2014), arXiv: 1302.4264.Google Scholar
  15. 15.
    M. Buballa, and S. Carignano, Prog. Particle Nucl. Phys. 81, 39 (2015), arXiv: 1406.1367.Google Scholar
  16. 16.
    J. M. Lattimer, and M. Prakash, Phys. Rep. 621, 127 (2016), arXiv: 1512.07820.MathSciNetGoogle Scholar
  17. 17.
    L. Lindblom, Astrophys. J. 398, 569 (1992).Google Scholar
  18. 18.
    F. Özel, and D. Psaltis, Phys. Rev. D 80, 103003 (2009), arXiv: 0905.1959.Google Scholar
  19. 19.
    T. E. Riley, G. Raaijmakers, and A. L. Watts, Mon. Not. R. Astron. Soc. 478, 1093 (2018), arXiv: 1804.09085.Google Scholar
  20. 20.
    V. Suleimanov, J. Poutanen, M. Revnivtsev, and K. Werner, Astrophys. J. 742, 122 (2011), arXiv: 1004.4871.Google Scholar
  21. 21.
    F. Özel, Rep. Prog. Phys. 76, 016901 (2013), arXiv: 1210.0916.Google Scholar
  22. 22.
    A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J. 765, L5 (2013), arXiv: 1205.6871.Google Scholar
  23. 23.
    S. Guillot, and R. E. Rutledge, Astrophys. J. 796, L3 (2014), arXiv: 1409.4306.Google Scholar
  24. 24.
    J. Nättilä, A. W. Steiner, J. J. E. Kajava, V. F. Suleimanov, and J. Poutanen, Astron. Astrophys. 591, A25 (2016), arXiv: 1509.06561.Google Scholar
  25. 25.
    J. Nättilä, M. C. Miller, A. W. Steiner, J. J. E. Kajava, V. F. Suleimanov, and J. Poutanen, Astron. Astrophys. 608, A31 (2017), arXiv: 1709.09120.Google Scholar
  26. 26.
    A. W. Steiner, C. O. Heinke, S. Bogdanov, C. K. Li, W. C. G. Ho, A. Bahramian, and S. Han, 2017, arXiv: 1709.05013.Google Scholar
  27. 27.
    A. Akmal, and V. R. Pandharipande, Phys. Rev. C 56, 2261 (1997).Google Scholar
  28. 28.
    J. M. Lattimer, and M. Prakash, Astrophys. J. 550, 426 (2001).Google Scholar
  29. 29.
    A. Li, B. Zhang, N. B. Zhang, H. Gao, B. Qi, and T. Liu, Phys. Rev. D 94, 083010 (2016), arXiv: 1606.02934.Google Scholar
  30. 30.
    S. Bhattacharyya, I. Bombaci, D. Logoteta, and A. V. Thampan, Mon. Not. R. Astron. Soc. 457, 3101 (2016), arXiv: 1601.06120.Google Scholar
  31. 31.
    J. L. Zdunik, and P. Haensel, Astron. Astrophys. 551, A61 (2013), arXiv: 1211.1231.Google Scholar
  32. 32.
    I. Bednarek, P. Haensel, J. L. Zdunik, M. Bejger, and R. Mańka, Astron. Astrophys. 543, A157 (2012), arXiv: 1111.6942.Google Scholar
  33. 33.
    K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, Astrophys. J. 773, 11 (2013), arXiv: 1303.4662.Google Scholar
  34. 34.
    A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and A. Vuorinen, Astrophys. J. 789, 127 (2014).Google Scholar
  35. 35.
    M. C. Miller, arXiv: 1312.0029.Google Scholar
  36. 36.
    C. O. Heinke, H. N. Cohn, P. M. Lugger, N. A. Webb, W. C. G. Ho, J. Anderson, S. Campana, S. Bogdanov, D. Haggard, A. M. Cool, and J. E. Grindlay, Mon. Not. R. Astron. Soc. 444, 443 (2014), arXiv: 1406.1497.Google Scholar
  37. 37.
    J. Poutanen, J. Nättilä, J. J. E. Kajava, O. M. Latvala, D. K. Galloway, E. Kuulkers, and V. F. Suleimanov, Mon. Not. R. Astron. Soc. 442, 3777 (2014), arXiv: 1405.2663.Google Scholar
  38. 38.
    C. Motch, J. Wilms, D. Barret, W. Becker, S. Bogdanov, L. Boirin, S. Corbel, Ed Cackett, S. Campana, D. D. Martino, F. Haberl, J. in’t Zand, M. Méndez, R. Mignani, J. Miller, M. Orio, D. Psaltis, N. Rea, J. Rodriguez, A. Rozanska, A. Schwope, A. Steiner, N. Webb, L. Zampieri, and S. Zane, arXiv: 1306.2334.Google Scholar
  39. 39.
    Z. Arzoumanian, K. C. Gendreau, C. L. Baker, T. Cazeau, P. Hestnes, J. W. Kellogg, S. J. Kenyon, R. P. Kozon, K.-C. Liu, S. S. Manthripragada, C. B. Markwardt, A. L. Mitchell, J. W. Mitchell, C. A. Monroe, T. Okajima, S. E. Pollard, D. F. Powers, B. J. Savadkin, L. B. Winternitz, P. T. Chen, M. R. Wright, R. Foster, G. Prigozhin, R. Remillard, and J. Doty, in: The Neutron Star Interior Composition Explorer (NICER): Mission Definition: Proceedings Volume 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 914420 (29 July 2014), Montréal, Quebec, Canada (2014), p. 20.Google Scholar
  40. 40.
    P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, and J. W. T. Hessels, Nature 467, 1081 (2010), arXiv: 1010.5788.Google Scholar
  41. 41.
    J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pennucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G. Whelan, Science 340, 1233232 (2013), arXiv: 1304.6875.Google Scholar
  42. 42.
    E. Fonseca, T. T. Pennucci, J. A. Ellis, I. H. Stairs, D. J. Nice, S. M. Ransom, P. B. Demorest, Z. Arzoumanian, K. Crowter, T. Dolch, R. D. Ferdman, M. E. Gonzalez, G. Jones, M. L. Jones, M. T. Lam, L. Levin, M. A. McLaughlin, K. Stovall, J. K. Swiggum, and W. Zhu, Astrophys. J. 832, 167 (2016), arXiv: 1603.00545.Google Scholar
  43. 43.
    J. M. Lattimer, and B. F. Schutz, Astrophys. J. 629, 979 (2005).Google Scholar
  44. 44.
    M. Kramer, and N. Wex, Class. Quantum Grav. 26, 073001 (2009).Google Scholar
  45. 45.
    J. Aasi, et al. (The LIGO Scientific Collaboration), Class. Quantum Grav. 32, 074001 (2015), arXiv: 1411.4547.Google Scholar
  46. 46.
    F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca, J. Amarni, P. Astone, G. Balestri, G. Ballardin, F. Barone, J. P. Baronick, M. Barsuglia, A. Basti, F. Basti, T. S. Bauer, V. Bavigadda, M. Bejger, M. G. Beker, C. Belczynski, D. Bersanetti, A. Bertolini, M. Bitossi, M. A. Bizouard, S. Bloemen, M. Blom, M. Boer, G. Bogaert, D. Bondi, F. Bondu, L. Bonelli, R. Bonnand, V. Boschi, L. Bosi, T. Bouedo, C. Bradaschia, M. Branchesi, T. Briant, A. Brillet, V. Brisson, T. Bulik, H. J. Bulten, D. Buskulic, C. Buy, G. Cagnoli, E. Calloni, C. Campeggi, B. Canuel, F. Carbognani, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. C. Mottin, A. Chincarini, A. Chiummo, S. Chua, F. Cleva, E. Coccia, P. F. Cohadon, A. Colla, M. Colombini, A. Conte, J. P. Coulon, E. Cuoco, A. Dalmaz, S. D’Antonio, V. Dattilo, M. Davier, R. Day, G. Debreczeni, J. Degallaix, S. Deléglise, W. D. Pozzo, H. Dereli, R. D. Rosa, L. D. Fiore, A. D. Lieto, A. D. Virgilio, M. Doets, V. Dolique, M. Drago, M. Ducrot, G. Endr˝oczi, V. Fafone, S. Farinon, I. Ferrante, F. Ferrini, F. Fidecaro, I. Fiori, R. Flaminio, J. D. Fournier, S. Franco, S. Frasca, F. Frasconi, L. Gammaitoni, F. Garufi, M. Gaspard, A. Gatto, G. Gemme, B. Gendre, E. Genin, A. Gennai, S. Ghosh, L. Giacobone, A. Giazotto, R. Gouaty, M. Granata, G. Greco, P. Groot, G. M. Guidi, J. Harms, A. Heidmann, H. Heitmann, P. Hello, G. Hemming, E. Hennes, D. Hofman, P. Jaranowski, R. J. G. Jonker, M. Kasprzack, F. Kéfélian, I. Kowalska, M. Kraan, A. Królak, A. Kutynia, C. Lazzaro, M. Leonardi, N. Leroy, N. Letendre, T. G. F. Li, B. Lieunard, M. Lorenzini, V. Loriette, G. Losurdo, C. Magazzú, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, V. Mangano, M. Mantovani, F. Marchesoni, F. Marion, J. Marque, F. Martelli, L. Martellini, A. Masserot, D. Meacher, J. Meidam, F. Mezzani, C. Michel, L. Milano, Y. Minenkov, A. Moggi, M. Mohan, M. Montani, N. Morgado, B. Mours, F. Mul, M. F. Nagy, I. Nardecchia, L. Naticchioni, G. Nelemans, I. Neri, M. Neri, F. Nocera, E. Pacaud, C. Palomba, F. Paoletti, A. Paoli, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Perciballi, S. Petit, M. Pichot, F. Piergiovanni, G. Pillant, A. Piluso, L. Pinard, R. Poggiani, M. Prijatelj, G. A. Prodi, M. Punturo, P. Puppo, D. S. Rabeling, I. Rácz, P. Rapagnani, M. Razzano, V. Re, T. Regimbau, F. Ricci, F. Robinet, A. Rocchi, L. Rolland, R. Romano, D. Rosińska, P. Ruggi, E. Saracco, B. Sassolas, F. Schimmel, D. Sentenac, V. Sequino, S. Shah, K. Siellez, N. Straniero, B. Swinkels, M. Tacca, M. Tonelli, F. Travasso, M. Turconi, G. Vajente, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, M. V. van der Sluys, J. van Heijningen, M. Vasúth, G. Vedovato, J. Veitch, D. Verkindt, F. Vetrano, A. Viceré, J. Y. Vinet, G. Visser, H. Vocca, R. Ward, M. Was, L. W. Wei, M. Yvert, A. Z. żny, and J. P. Zendri, Class. Quantum Grav. 32, 024001 (2015), arXiv: 1408.3978.Google Scholar
  47. 47.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.Google Scholar
  48. 48.
    J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman, Phys. Rev. D 79, 124032 (2009), arXiv: 0812.2163.Google Scholar
  49. 49.
    J. S. Read, L. Baiotti, J. D. E. Creighton, J. L. Friedman, B. Giacomazzo, K. Kyutoku, C. Markakis, L. Rezzolla, M. Shibata, and K. Taniguchi, Phys. Rev. D 88, 044042 (2013), arXiv: 1306.4065.Google Scholar
  50. 50.
    K. Hotokezaka, K. Kyutoku, Y. Sekiguchi, and M. Shibata, Phys. Rev. D 93, 064082 (2016), arXiv: 1603.01286.Google Scholar
  51. 51.
    W. Del Pozzo, T. G. F. Li, M. Agathos, C. Van Den Broeck, and S. Vitale, Phys. Rev. Lett. 111, 071101 (2013), arXiv: 1307.8338.Google Scholar
  52. 52.
    M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, Phys. Rev. D 92, 023012 (2015), arXiv: 1503.05405.Google Scholar
  53. 53.
    B. D. Lackey, and L. Wade, Phys. Rev. D 91, 043002 (2015), arXiv: 1410.8866.Google Scholar
  54. 54.
    K. Chatziioannou, K. Yagi, A. Klein, N. Cornish, and N. Yunes, Phys. Rev. D 92, 104008 (2015), arXiv: 1508.02062.Google Scholar
  55. 55.
    M. Favata, Phys. Rev. Lett. 112, 101101 (2014), arXiv: 1310.8288.Google Scholar
  56. 56.
    A. Bauswein, H. T. Janka, K. Hebeler, and A. Schwenk, Phys. Rev. D 86, 063001 (2012), arXiv: 1204.1888.Google Scholar
  57. 57.
    A. Bauswein, N. Stergioulas, and H. T. Janka, Phys. Rev. D 90, 023002 (2014), arXiv: 1403.5301.Google Scholar
  58. 58.
    K. Takami, L. Rezzolla, and L. Baiotti, Phys. Rev. Lett. 113, 091104 (2014), arXiv: 1403.5672.Google Scholar
  59. 59.
    J. A. Clark, A. Bauswein, N. Stergioulas, and D. Shoemaker, Class. Quantum Grav. 33, 085003 (2016), arXiv: 1509.08522.Google Scholar
  60. 60.
    B. D. Lackey, K. Kyutoku, M. Shibata, P. R. Brady, and J. L. Friedman, Phys. Rev. D 89, 043009 (2014), arXiv: 1303.6298.Google Scholar
  61. 61.
    K. R. Pechenick, C. Ftaclas, and J. M. Cohen, Astrophys. J. 274, 846 (1983).Google Scholar
  62. 62.
    M. C. Miller, and F. K. Lamb, Astrophys. J. 499, L37 (1998).Google Scholar
  63. 63.
    J. Poutanen, and M. Gierlinski, Mon. Not. R. Astron. Soc. 343, 1301 (2003).Google Scholar
  64. 64.
    J. Poutanen, and A. M. Beloborodov, Mon. Not. R. Astron. Soc. 373, 836 (2006).Google Scholar
  65. 65.
    C. Cadeau, S. M. Morsink, D. Leahy, and S. S. Campbell, Astrophys. J. 654, 458 (2007).Google Scholar
  66. 66.
    S. M. Morsink, D. A. Leahy, C. Cadeau, and J. Braga, Astrophys. J. 663, 1244 (2007).Google Scholar
  67. 67.
    M. Bauböck, E. Berti, D. Psaltis, and F. Özel, Astrophys. J. 777, 68 (2013), arXiv: 1306.0569.Google Scholar
  68. 68.
    D. Psaltis, and F. Özel, Astrophys. J. 792, 87 (2014), arXiv: 1305.6615.Google Scholar
  69. 69.
    J. Nättilä, and P. Pihajoki, arXiv: 1709.07292.Google Scholar
  70. 70.
    N. Stergioulas, Living Rev. Relativ. 6, 3 (2003).MathSciNetGoogle Scholar
  71. 71.
    K. Yagi, and N. Yunes, Class. Quantum Grav. 33, 13LT01 (2016), arXiv: 1512.02639.Google Scholar
  72. 72.
    M. Bauböck, D. Psaltis, F. Özel, and T. Johannsen, Astrophys. J. 753, 175 (2012), arXiv: 1110.4389.Google Scholar
  73. 73.
    J. Poutanen, in: A Decade of Accreting Millisecond X-ray Pulsars, AIP Conference Proceedings, Vol. 1068, edited by R. Wijnands, D. Altamirano, P. Soleri, N. Degenaar, N. Rea, P. Casella, A. Patruno, and M. Linares (Springer, Berlin, 2008), p. 77.Google Scholar
  74. 74.
    K. H. Lo, M. C. Miller, S. Bhattacharyya, and F. K. Lamb, Astrophys. J. 776, 19 (2013), arXiv: 1304.2330.Google Scholar
  75. 75.
    D. Psaltis, F. Özel, and D. Chakrabarty, Astrophys. J. 787, 136 (2014), arXiv: 1311.1571.Google Scholar
  76. 76.
    M. C. Miller, and F. K. Lamb, Astrophys. J. 808, 31 (2015), arXiv: 1407.2579.Google Scholar
  77. 77.
    A. L. Stevens, J. D. Fiege, D. A. Leahy, and S. M. Morsink, Astrophys. J. 833, 244 (2016), arXiv: 1606.09232.Google Scholar
  78. 78.
    K. Viironen, and J. Poutanen, Astron. Astrophys. 426, 985 (2004).Google Scholar
  79. 79.
    V. Radhakrishnan, and D. J. Cooke, Astrophys. Lett. 3, 225 (1969).Google Scholar
  80. 80.
    D. C. Ferguson, Astrophys. J. 183, 977 (1973).Google Scholar
  81. 81.
    D. C. Ferguson, Astrophys. J. 205, 247 (1976).Google Scholar
  82. 82.
    A. Patruno, and A. L. Watts, arXiv: 1206.2727.Google Scholar
  83. 83.
    J. Poutanen, Adv. Space Res. 38, 2697 (2006).Google Scholar
  84. 84.
    D. A. Leahy, S. M. Morsink, and C. Cadeau, Astrophys. J. 672, 1119 (2008).Google Scholar
  85. 85.
    D. A. Leahy, S. M. Morsink, Y. Y. Chung, and Y. Chou, Astrophys. J. 691, 1235 (2009), arXiv: 0806.0824.Google Scholar
  86. 86.
    D. A. Leahy, S. M. Morsink, and Y. Chou, Astrophys. J. 742, 17 (2011), arXiv: 1106.3131.Google Scholar
  87. 87.
    T. Strohmayer, L. Bildsten, in Compact Stellar X-ray Sources, Cambridge Astrophysics Series, Vol. 39, edited by W. Lewin, and M. van der Klis (Cambridge University Press, Cambridge, 2006), p. 113.Google Scholar
  88. 88.
    D. K. Galloway, M. P. Muno, J. M. Hartman, D. Psaltis, and D. Chakrabarty, Astrophys. J. Supplement Ser. 179, 360 (2008).Google Scholar
  89. 89.
    A. L. Watts, Annu. Rev. Astron. Astrophys. 50, 609 (2012), arXiv: 1203.2065.Google Scholar
  90. 90.
    T. Salmi, J. Nättilä, J. Poutanen, arXiv: 1805.01149.Google Scholar
  91. 91.
    V. Suleimanov, J. Poutanen, and K. Werner, Astron. Astrophys. 527, A139 (2011), arXiv: 1009.6147.Google Scholar
  92. 92.
    M. C. Miller, S. Boutloukos, K. H. Lo, and F. K. Lamb, Proc. IAU 8, 101 (2012).Google Scholar
  93. 93.
    S. Bhattacharyya, T. E. Strohmayer, M. C. Miller, and C. B. Markwardt, Astrophys. J. 619, 483 (2005).Google Scholar
  94. 94.
    P. Chang, L. Bildsten, and I. Wasserman, Astrophys. J. 629, 998 (2005).Google Scholar
  95. 95.
    S. Bogdanov, J. E. Grindlay, and G. B. Rybicki, Astrophys. J. 689, 407 (2008), arXiv: 0801.4030.Google Scholar
  96. 96.
    K. C. Gendreau, Z. Arzoumanian, and T. Okajima, in: The Neutron star Interior Composition ExploreR (NICER): An Explorer Mission of Opportunity for Soft X-ray Timing Spectroscopy: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8443, edited by T. Takahashi, S. S. Murray, and J.-W. A. den Herder, (2012), p. 13.Google Scholar
  97. 97.
    S. Bogdanov, Astrophys. J. 762, 96 (2013), arXiv: 1211.6113.Google Scholar
  98. 98.
    D. J. Reardon, G. Hobbs, W. Coles, Y. Levin, M. J. Keith, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, S. Dai, M. Kerr, P. D. Lasky, R. N. Manchester, S. Osłowski, V. Ravi, R. M. Shannon, W. van Straten, L. Toomey, J. Wang, L. Wen, X. P. You, and X. J. Zhu, Mon. Not. R. Astron. Soc. 455, 1751 (2016), arXiv: 1510.04434.Google Scholar
  99. 99.
    S. Bogdanov, and J. E. Grindlay, Astrophys. J. 703, 1557 (2009), arXiv: 0908.1971.Google Scholar
  100. 100.
    D. L. Kaplan, J. Boyles, B. H. Dunlap, S. P. Tendulkar, A. T. Deller, S. M. Ransom, M. A. McLaughlin, D. R. Lorimer, and I. H. Stairs, Astrophys. J. 789, 119 (2014), arXiv: 1406.0488.Google Scholar
  101. 101.
    G. Desvignes, R. N. Caballero, L. Lentati, J. P. W. Verbiest, D. J. Champion, B. W. Stappers, G. H. Janssen, P. Lazarus, S. Osłowski, S. Babak, C. G. Bassa, P. Brem, M. Burgay, I. Cognard, J. R. Gair, E. Graikou, L. Guillemot, J. W. T. Hessels, A. Jessner, C. Jordan, R. Karuppusamy, M. Kramer, A. Lassus, K. Lazaridis, K. J. Lee, K. Liu, A. G. Lyne, J. McKee, C. M. F. Mingarelli, D. Perrodin, A. Petiteau, A. Possenti, M. B. Purver, P. A. Rosado, S. Sanidas, A. Sesana, G. Shaifullah, R. Smits, S. R. Taylor, G. Theureau, C. Tiburzi, R. van Haasteren, and A. Vecchio, Mon. Not. R. Astron. Soc. 458, 3341 (2016), arXiv: 1602.08511.Google Scholar
  102. 102.
    P. Haensel, J. L. Zdunik, M. Bejger, and J. M. Lattimer, Astron. Astrophys. 502, 605 (2009), arXiv: 0901.1268.Google Scholar
  103. 103.
    J. W. T. Hessels, Science 311, 1901 (2006).Google Scholar
  104. 104.
    M. A. Alpar, A. F. Cheng, M. A. Ruderman, and J. Shaham, Nature 300, 728 (1982). 2 029503-17Google Scholar
  105. 105.
    V. Radhakrishnan, and G. Srinivasan, Curr. Sci. 51, 1096 (1982).Google Scholar
  106. 106.
    D. Bhattacharya, Phys. Rep. 203, 1 (1991).Google Scholar
  107. 107.
    G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Astrophys. J. 423, L117 (1994).Google Scholar
  108. 108.
    D. K. Galloway, E. H. Morgan, M. I. Krauss, P. Kaaret, and D. Chakrabarty, Astrophys. J. 654, L73 (2007).Google Scholar
  109. 109.
    P. Casella, D. Altamirano, A. Patruno, R. Wijnands, and M. van der Klis, Astrophys. J. 674, L41 (2008), arXiv: 0708.1110.Google Scholar
  110. 110.
    D. Altamirano, P. Casella, A. Patruno, R. Wijnands, and M. van der Klis, Astrophys. J. 674, L45 (2008), arXiv: 0708.1316.Google Scholar
  111. 111.
    M. M. Romanova, A. K. Kulkarni, and R. V. E. Lovelace, Astrophys. J. 673, L171 (2008), arXiv: 0711.0418.Google Scholar
  112. 112.
    F. K. Lamb, S. Boutloukos, S. Van Wassenhove, R. T. Chamberlain, K. H. Lo, and M. C. Miller, Astrophys. J. 705, L36 (2009), arXiv: 0809.4016.Google Scholar
  113. 113.
    M. Ruderman, Astrophys. J. 366, 261 (1991).Google Scholar
  114. 114.
    W. B. Atwood, M. Ziegler, R. P. Johnson, and B. M. Baughman, Astrophys. J. 652, L49 (2006).Google Scholar
  115. 115.
    A. A. Abdo, et al. (Fermi-LAT Collaboration), Science 325, 840 (2009), arXiv: 1009.0748.Google Scholar
  116. 116.
    C. Messenger, Phys. Rev. D 84, 083003 (2011), arXiv: 1109.0501.Google Scholar
  117. 117.
    H. J. Pletsch, L. Guillemot, B. Allen, M. Kramer, C. Aulbert, H. Fehrmann, P. S. Ray, E. D. Barr, A. Belfiore, F. Camilo, P. A. Caraveo, C¸ elik, D. J. Champion, M. Dormody, R. P. Eatough, E. C. Ferrara, P. C. C. Freire, J. W. T. Hessels, M. Keith, M. Kerr, A. de Luca, A. G. Lyne, M. Marelli, M. A. McLaughlin, D. Parent, S. M. Ransom, M. Razzano, W. Reich, P. M. Saz Parkinson, B. W. Stappers, and M. T. Wolff, Astrophys. J. 744, 105 (2012), arXiv: 1111.0523.Google Scholar
  118. 118.
    A. D’Ai, P. ˙ Zycki, T. Di Salvo, R. Iaria, G. Lavagetto, and N. R. Robba, Astrophys. J. 667, 411 (2007), arXiv: 0705.4172.Google Scholar
  119. 119.
    H. Raichur, R. Misra, and G. Dewangan, Mon. Not. R. Astron. Soc. 416, 637 (2011), arXiv: 1105.5523.Google Scholar
  120. 120.
    S. Campana, M. Ravasio, G. L. Israel, V. Mangano, and T. Belloni, Astrophys. J. 594, L39 (2003).Google Scholar
  121. 121.
    A. M. Archibald, S. Bogdanov, A. Patruno, J. W. T. Hessels, A. T. Deller, C. Bassa, G. H. Janssen, V. M. Kaspi, A. G. Lyne, B. W. Stappers, S. P. Tendulkar, C. R. D’Angelo, and R. Wijnands, Astrophys. J. 807, 62 (2015), arXiv: 1412.1306.Google Scholar
  122. 122.
    C. G. Bassa, A. Patruno, J. W. T. Hessels, E. F. Keane, B. Monard, E. K. Mahony, S. Bogdanov, S. Corbel, P. G. Edwards, A. M. Archibald, G. H. Janssen, B. W. Stappers, and S. Tendulkar, Mon. Not. R. Astron. Soc. 441, 1825 (2014), arXiv: 1402.0765.Google Scholar
  123. 123.
    M. Klis, Annu. Rev. Astron. Astrophys. 38, 717 (2000).Google Scholar
  124. 124.
    M. C. Miller, F. K. Lamb, and D. Psaltis, Astrophys. J. 508, 791 (1998).Google Scholar
  125. 125.
    W. Yu, and M. van der Klis, Astrophys. J. 567, L67 (2002).Google Scholar
  126. 126.
    P. Bult, and M. Klis, Astrophys. J. 806, 90 (2015), arXiv: 1505.00596.Google Scholar
  127. 127.
    D. Barret, J. F. Olive, and M. C. Miller, Mon. Not. R. Astron. Soc. 370, 1140 (2006).Google Scholar
  128. 128.
    W. Yu, M. van der Klis, and P. G. Jonker, Astrophys. J. 559, L29 (2001).Google Scholar
  129. 129.
    D. Barret, J. F. Olive, and M. C. Miller, Mon. Not. R. Astron. Soc. 361, 855 (2005).Google Scholar
  130. 130.
    A. Sanna, M. Méndez, T. Belloni, and D. Altamirano, Mon. Not. R. Astron. Soc. 424, 2936 (2012), arXiv: 1206.0182.Google Scholar
  131. 131.
    W. Yu, in Astrophysics of Compact Objects: AIP Conference Series Vol. 968, edited by Y. F. Yuan, X. D. Li, and D. Lai (AIP, Huangshan, 2008), p. 215.Google Scholar
  132. 132.
    M. G. B. de Avellar, M. Méndez, A. Sanna, and J. E. Horvath, Mon. Not. R. Astron. Soc. 433, 3453 (2013), arXiv: 1302.6464.Google Scholar
  133. 133.
    H. C. Lee, R. Misra, and R. E. Taam, Astrophys. J. 549, L229 (2001).Google Scholar
  134. 134.
    G. Zhang, M. Méndez, A. Sanna, E. M. Ribeiro, and J. D. Gelfand, Mon. Not. R. Astron. Soc. 465, 5003 (2017), arXiv: 1611.09097.Google Scholar
  135. 135.
    E. M. Ribeiro, M. Méndez, G. Zhang, and A. Sanna, Mon. Not. R. Astron. Soc. 471, 1208 (2017), arXiv: 1707.03200.Google Scholar
  136. 136.
    A. C. Fabian, K. Iwasawa, C. S. Reynolds, and A. J. Young, Publ. Astron. Soc. Pac. 112, 1145 (2000).Google Scholar
  137. 137.
    C. Reynolds, Phys. Rep. 377, 389 (2003).Google Scholar
  138. 138.
    J. M. Miller, Annu. Rev. Astron. Astrophys. 45, 441 (2007), arXiv: 0705.0540.Google Scholar
  139. 139.
    S. Bhattacharyya, and T. E. Strohmayer, Astrophys. J. 664, L103 (2007), arXiv: 0708.3648.Google Scholar
  140. 140.
    E. M. Cackett, J. M. Miller, S. Bhattacharyya, J. E. Grindlay, J. Homan, M. van der Klis, M. C. Miller, T. E. Strohmayer, and R. Wijnands, Astrophys. J. 674, 415 (2008), arXiv: 0708.3615.Google Scholar
  141. 141.
    D. Pandel, P. Kaaret, and S. Corbel, Astrophys. J. 688, 1288 (2008), arXiv: 0808.2214.Google Scholar
  142. 142.
    A. D’Aí, R. Iaria, T. D. Salvo, G. Matt, and N. R. Robba, Astrophys. J. 693, L1 (2009), arXiv: 0812.1974.Google Scholar
  143. 143.
    E. M. Cackett, J. M. Miller, D. R. Ballantyne, D. Barret, S. Bhattacharyya, M. Boutelier, M. C. Miller, T. E. Strohmayer, and R. Wijnands, Astrophys. J. 720, 205 (2010), arXiv: 0908.1098.Google Scholar
  144. 144.
    J. M. Miller, M. L. Parker, F. Fuerst, M. Bachetti, D. Barret, B. W. Grefenstette, S. Tendulkar, F. A. Harrison, S. E. Boggs, D. Chakrabarty, F. E. Christensen, W. W. Craig, A. C. Fabian, C. J. Hailey, L. Natalucci, F. Paerels, V. Rana, D. K. Stern, J. A. Tomsick, and W. W. Zhang, Astrophys. J. 779, L2 (2013a), arXiv: 1310.5776.Google Scholar
  145. 145.
    C. Y. Chiang, E. M. Cackett, J. M. Miller, D. Barret, A. C. Fabian, A. D’aí, M. L. Parker, S. Bhattacharyya, L. Burderi, T. D. Salvo, E. Egron, J. Homan, R. Iaria, D. Lin, and M. C. Miller, Astrophys. J. 821, 105 (2016), arXiv: 1509.02969.Google Scholar
  146. 146.
    S. Bhattacharyya, Mon. Not. R. Astron. Soc. 415, 3247 (2011), arXiv: 1109.2068.Google Scholar
  147. 147.
    S. Bhattacharyya, J. Astrophys. Astron. 38, 38 (2017), arXiv: 1709.07069.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anna L. Watts
    • 1
    Email author
  • WenFei Yu
    • 2
  • Juri Poutanen
    • 3
    • 4
  • Shu Zhang
    • 5
  • Sudip Bhattacharyya
    • 6
  • Slavko Bogdanov
    • 7
  • Long Ji
    • 8
  • Alessandro Patruno
    • 9
  • Thomas E. Riley
    • 1
  • Pavel Bakala
    • 10
  • Altan Baykal
    • 11
  • Federico Bernardini
    • 12
    • 13
  • Ignazio Bombaci
    • 14
    • 15
  • Edward Brown
    • 16
  • Yuri Cavecchi
    • 17
    • 18
  • Deepto Chakrabarty
    • 19
  • Jérôme Chenevez
    • 20
  • Nathalie Degenaar
    • 1
  • Melania Del Santo
    • 21
  • Tiziana Di Salvo
    • 22
  • Victor Doroshenko
    • 8
  • Maurizio Falanga
    • 23
  • Robert D. Ferdman
    • 24
  • Marco Feroci
    • 25
  • Angelo F. Gambino
    • 22
  • MingYu Ge
    • 5
  • Svenja K. Greif
    • 26
    • 27
  • Sebastien Guillot
    • 28
  • Can Gungor
    • 5
  • Dieter H. Hartmann
    • 29
  • Kai Hebeler
    • 26
    • 27
  • Alexander Heger
    • 30
  • Jeroen Homan
    • 19
  • Rosario Iaria
    • 22
  • Jean in’t Zand
    • 31
  • Oleg Kargaltsev
    • 32
  • Aleksi Kurkela
    • 33
    • 34
  • XiaoYu Lai
    • 35
  • Ang Li
    • 36
  • XiangDong Li
    • 37
  • ZhaoSheng Li
    • 38
  • Manuel Linares
    • 39
  • FangJun Lu
    • 5
  • Simin Mahmoodifar
    • 40
  • Mariano Méndez
    • 41
  • M. Coleman Miller
    • 42
  • Sharon Morsink
    • 43
  • Joonas Nättilä
    • 3
    • 4
  • Andrea Possenti
    • 44
  • Chanda Prescod-Weinstein
    • 45
  • JinLu Qu
    • 5
  • Alessandro Riggio
    • 46
  • Tuomo Salmi
    • 3
  • Andrea Sanna
    • 46
  • Andrea Santangelo
    • 8
    • 5
  • Hendrik Schatz
    • 47
  • Achim Schwenk
    • 26
    • 27
    • 48
  • LiMing Song
    • 5
  • Eva Šrámková
    • 10
  • Benjamin Stappers
    • 49
  • Holger Stiele
    • 50
  • Tod Strohmayer
    • 40
  • Ingo Tews
    • 51
    • 47
  • Laura Tolos
    • 52
    • 53
    • 54
  • Gabriel Török
    • 10
  • David Tsang
    • 18
  • Martin Urbanec
    • 10
  • Andrea Vacchi
    • 55
    • 56
  • RenXin Xu
    • 57
  • YuPeng Xu
    • 5
  • Silvia Zane
    • 58
  • GuoBao Zhang
    • 59
  • ShuangNan Zhang
    • 5
  • WenDa Zhang
    • 60
  • ShiJie Zheng
    • 5
  • Xia Zhou
    • 61
  1. 1.Anton Pannekoek Institute for AstronomyUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Shanghai Astronomical ObservatoryShanghaiChina
  3. 3.Tuorla Observatory, Department of Physics and AstronomyUniversity of Turku Väisäläntie 20PiikkiöFinland
  4. 4.NorditaKTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  5. 5.Institute of High Energgy PhysicsChinese Academy SciencesBeijingChina
  6. 6.Tata Institute of Fundamental ResearchMumbaiIndia
  7. 7.Columbia Astrophysics LaboratoryColumbia UniversityNew YorkUSA
  8. 8.Institut für Astronomie und Astrophysik TübingenUniversität TübingenTübingenGermany
  9. 9.Leiden ObservatoryLeiden UniversityLeidenThe Netherlands
  10. 10.Research Center for Computational Physics and Data ProcessingSilesian University in OpavaOpavaCzech Republic
  11. 11.Physics DepartmentMiddle East Technical UniversityAnkaraTurkey
  12. 12.INAF, Osservatorio Astronomico di RomaMonte Porzio CatoneItaly
  13. 13.New York University Abu DhabiAbu DhabiUAE
  14. 14.Dipartimento di Fisica Enrico FermiUniversity of PisaPisaItaly
  15. 15.INFN Italian National Institute for Nuclear PhysicsPisaItaly
  16. 16.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  17. 17.Department of Astrophysical SciencesPrinceton UniversityPrincetonUSA
  18. 18.Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonUK
  19. 19.MIT Kavli Institute for Astrophysics and Space ResearchCambridgeUSA
  20. 20.DTU SpaceTechnical University of DenmarkLyngbyDenmark
  21. 21.INAF/IASF PalermoPalermoItaly
  22. 22.Dipartimento di Fisica e ChimicaUniversita degli Studi di PalermoPalermoItaly
  23. 23.International Space Science Institute (ISSI)BernSwitzerland
  24. 24.Faculty of ScienceUniversity of East AngliaNorwichUK
  25. 25.INAFIstituto di Astrofisica e Planetologie SpazialiRomaItaly
  26. 26.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  27. 27.ExtreMe Matter Institute EMMIGSI Helmholtzzentrum fur Schwerionenforschung GmbHDarmstadtGermany
  28. 28.Instituto de AstrofisicaPontificia Universidad Católica de Chile, MaculSantiagoChile
  29. 29.Department of Physics & Astronomy, Kinard Lab of PhysicsClemson UniversityClemsonUSA
  30. 30.School of Physics and AstronomyMonash UniversityClayton VICAustralia
  31. 31.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands
  32. 32.Department of PhysicsThe George Washington UniversityWashingtonUSA
  33. 33.Theoretical Physics DepartmentCERNGenevaSwitzerland
  34. 34.Faculty ofScience and TechnologyUniversity ofStavangerStavangerNorway
  35. 35.School of Physics and Mechanical & Electrical EngineeringHubei University of EducationWuhanChina
  36. 36.Department of AstronomyXiamen University (Haiyun Campus)XiamenChina
  37. 37.School of Astronomy and Space ScienceNanjing UniversityNanjingChina
  38. 38.Department of PhysicsXiangtan UniversityXiangtanChina
  39. 39.Departament de Fisica, EEBEUniversitat Politecnica de CatalunyaBarcelonaSpain
  40. 40.NASA’s Goddard Space Flight CenterGreenbeltUSA
  41. 41.Kapteyn Astronomical InstituteUniversity of GroningenGroningenThe Netherlands
  42. 42.Department ofAstronomy and Joint Space-Science InstituteUniversity ofMarylandCollege Park MDUSA
  43. 43.Department of PhysicsUniversity of Alberta, EdmontonAlbertaCanada
  44. 44.INAFOsservatorio Astronomico di CagliariSelargiusItaly
  45. 45.Department of PhysicsUniversity of WashingtonSeattleUSA
  46. 46.Dipartimento di FisicaUniversita degli Studi di CagliariMonserratoItaly
  47. 47.JINA Center for the Evolution of the Elements, National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  48. 48.Max-Planck-Institut für KernphysikHeidelbergGermany
  49. 49.Jodrell Bank Centre for Astrophysics, School of Physics and AstronomyThe University of ManchesterManchesterUK
  50. 50.Institute for AstronomyNational Tsing Hua University, HsinchuTaiwanChina
  51. 51.Institute for Nuclear TheoryUniversity of WashingtonSeattleUSA
  52. 52.Institute of Space Sciences, IEEC-CSICBarcelonaSpain
  53. 53.Institut für Theoretische PhysikGoethe-Universität FrankfurtFrankfurt am MainGermany
  54. 54.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  55. 55.Department of Mathematics, Computer Science and PhysicsUniversity of UdineUdineItaly
  56. 56.INFN Italian National Institute for Nuclear PhysicsTrieste SectionTriesteItaly
  57. 57.School of Physics, State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  58. 58.Mullard Space Science LaboratoryUniversity College LondonSurreyUK
  59. 59.Yunnan ObservatoryChinese Academy of SciencesKunmingChina
  60. 60.Astronomical Institute of the Academy of SciencesBocníCzech Republic
  61. 61.Xinjiang Astronomical ObservatoryChinese Academy oof SciencesUrumqiChina

Personalised recommendations