Advertisement

Efficient universal quantum channel simulation in IBM’s cloud quantum computer

  • Shi-Jie Wei
  • Tao Xin
  • Gui-Lu LongEmail author
Article

Abstract

The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of “quasi-extreme” channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

Keywords

quantum channel quantum algorithm quantum capacity IBM quantum cloud 

References

  1. 1.
    R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).CrossRefGoogle Scholar
  2. 2.
    S. Lloyd, Science 273, 1073 (1996).MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. J. Wei, T. Wang, D. Ruan, and G. L. Long, Sci. Sin.-Inf. 47, 1277 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Y. Hou, H. Li, and G. L. Long, Sci. Bull. 62, 863 (2017).CrossRefGoogle Scholar
  5. 5.
    T. Xin, S. Huang, S. Lu, K. Li, Z. Luo, Z. Yin, J. Li, D. Lu, G. Long, and B. Zeng, Sci. Bull. 63, 17 (2018).CrossRefGoogle Scholar
  6. 6.
    F. Z. Jin, H.W. Chen, X. Rong, H. Zhou, M. J. Shi, Q. Zhang, C. Y. Ju, Y. F. Cai, S. L. Luo, X. H. Peng, and J. F. Du, Sci. China-Phys. Mech. Astron. 59, 630302 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, Sci. China-Phys. Mech. Astron. 59, 120312 (2016).CrossRefGoogle Scholar
  8. 8.
    X. L. Zhen, T. Xin, F. H. Zhang, and G. L. Long, Sci. China-Phys. Mech. Astron. 59, 690312 (2016).CrossRefGoogle Scholar
  9. 9.
    T. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).CrossRefGoogle Scholar
  10. 10.
    Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).CrossRefGoogle Scholar
  11. 11.
    L. Balents, Nature 464, 199 (2010).CrossRefGoogle Scholar
  12. 12.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).zbMATHGoogle Scholar
  13. 13.
    B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, Nat. Chem. 2, 106 (2010).CrossRefGoogle Scholar
  14. 14.
    J. I. Cirac, P. Maraner, and J. K. Pachos, Phys. Rev. Lett. 105, 190403 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein, and M. A. Martin-Delgado, Phys. Rev. Lett. 105, 190404 (2010).CrossRefGoogle Scholar
  16. 16.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F. Roos, Nature 463, 68 (2010).CrossRefGoogle Scholar
  17. 17.
    D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe, D. W. Leung, and X. Zhou, Phys. Rev. A 64, 062302 (2001).CrossRefGoogle Scholar
  18. 18.
    S. Lloyd, and L. Viola, Phys. Rev. A 65, 010101(R) (2001).CrossRefGoogle Scholar
  19. 19.
    H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, Nat. Phys 6, 382 (2010).CrossRefGoogle Scholar
  20. 20.
    H. Wang, S. Ashhab, and F. Nori, Phys. Rev. A 83, 062317 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert, Phys. Rev. Lett. 107, 120501 (2011).CrossRefGoogle Scholar
  22. 22.
    T. Barthel, and M. Kliesch, Phys. Rev. Lett. 108, 230504 (2012).CrossRefGoogle Scholar
  23. 23.
    R. Iten, R. Colbeck, and M. Christandl, Phys. Rev. A 95, 052316 (2017).CrossRefGoogle Scholar
  24. 24.
    A. Aspuru-Guzik, Science 309, 1704 (2005).CrossRefGoogle Scholar
  25. 25.
    B. M. Terhal, and D. P. DiVincenzo, Phys. Rev. A 61, 022301 (2000).CrossRefGoogle Scholar
  26. 26.
    D. Poulin, and P. Wocjan, Phys. Rev. Lett. 103, 220502 (2009).MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Adv. At. Mol. Opt. Phys. 61, 1 (2012).CrossRefGoogle Scholar
  28. 28.
    J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, Nature 470, 486 (2011).CrossRefGoogle Scholar
  29. 29.
    K. L. Brown, W. J. Munro, and V. M. Kendon, Entropy 12, 2268 (2010).MathSciNetCrossRefGoogle Scholar
  30. 30.
    I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).CrossRefGoogle Scholar
  31. 31.
    T. Prosen, and E. Ilievski, Phys. Rev. Lett. 107, 060403 (2011).CrossRefGoogle Scholar
  32. 32.
    F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633 (2009).CrossRefGoogle Scholar
  33. 33.
    W. F. Stinespring, Proc. Am. Math. Soc. 6, 211 (1955).MathSciNetGoogle Scholar
  34. 34.
    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).zbMATHGoogle Scholar
  35. 35.
    M. Mottonen, and J. J. Vartiainen, Trends in Quantum Computing Research (Nova, New York, 2006).Google Scholar
  36. 36.
    M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, Science 316, 579 (2007).CrossRefGoogle Scholar
  37. 37.
    L. Qing, L. Jian, and G. Guang-Can, Chin. Phys. Lett. 24, 1809 (2007).CrossRefGoogle Scholar
  38. 38.
    T. Hannemann, C. Wunderlich, M. Plesch, M. Ziman, and V. Buzek, arXiv: 0904.0923.Google Scholar
  39. 39.
    J. C. Lee, Y. C. Jeong, Y. S. Kim, and Y. H. Kim, Opt. Express 19, 16309 (2011).CrossRefGoogle Scholar
  40. 40.
    K. A. G. Fisher, R. Prevedel, R. Kaltenbaek, and K. J. Resch, New J. Phys. 14, 033016 (2012).CrossRefGoogle Scholar
  41. 41.
    M. Piani, D. Pitkanen, R. Kaltenbaek, and N. Lütkenhaus, Phys. Rev. A 84, 032304 (2011).CrossRefGoogle Scholar
  42. 42.
    D. S. Wang, D. W. Berry, M. C. de Oliveira, and B. C. Sanders, Phys. Rev. Lett. 111, 130504 (2013).CrossRefGoogle Scholar
  43. 43.
    M. B. Ruskai, S. Szarek, and E. Werner, Linear Algebra Appl. 347, 159 (2002).MathSciNetCrossRefGoogle Scholar
  44. 44.
    F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, Rev. Mod. Phys. 86, 1203 (2014).CrossRefGoogle Scholar
  45. 45.
    A. Jamiolkowski, Rep. Math. Phys. 3, 275 (1972).CrossRefGoogle Scholar
  46. 46.
    M. D. Choi, Linear Algebra Appl. 10, 285 (1975).MathSciNetCrossRefGoogle Scholar
  47. 47.
    C. King, and M. B. Ruskai, IEEE Trans. Inform. Theor. 47, 192 (2001).CrossRefGoogle Scholar
  48. 48.
    G. L. Long, Commun. Theor. Phys. 45, 825 (2006).CrossRefGoogle Scholar
  49. 49.
    G. L. Long, Int. J. Theor. Phys. 50, 1305 (2011).CrossRefGoogle Scholar
  50. 50.
    G. L. Long, Y. Liu, Theor. Phys. 50, 1303 (2008).Google Scholar
  51. 51.
    G. L. Long, Y. Liu, and C. Wang, Commun. Theor. Phys. 51, 65 (2009).CrossRefGoogle Scholar
  52. 52.
    S. Gudder, Quantum Inf. Process. 6, 37 (2007).MathSciNetCrossRefGoogle Scholar
  53. 53.
    G. L. Long, Quantum Inf. Process. 6, 49 (2007).MathSciNetCrossRefGoogle Scholar
  54. 54.
    S. Gudder, Int. J. Theor. Phys. 47, 268 (2008).CrossRefGoogle Scholar
  55. 55.
    Y. Q. Wang, H. K. Du, and Y. N. Dou, Int. J. Theor. Phys. 47, 2268 (2008).CrossRefGoogle Scholar
  56. 56.
    H. K. Du, Y. Q.Wang, and J. L. Xu, J. Math. Phys. 49, 013507 (2008).MathSciNetCrossRefGoogle Scholar
  57. 57.
    S. J. Wei, and G. L. Long, Quantum Inf. Process. 15, 1189 (2016).MathSciNetCrossRefGoogle Scholar
  58. 58.
    S. J. Wei, D. Ruan, and G. L. Long, Sci. Rep. 6, 30727 (2016).CrossRefGoogle Scholar
  59. 59.
    Z. H. Guo, H. X. Cao, and S. X. Qu, Sci. China-Phys. Mech. Astron. 58, 040302 (2015).Google Scholar
  60. 60.
    D. Alsina, and J. I. Latorre, Phys. Rev. A 94, 012314 (2016).CrossRefGoogle Scholar
  61. 61.
    S. J. Devitt, Phys. Rev. A 94, 032329 (2016).CrossRefGoogle Scholar
  62. 62.
    M. Hebenstreit, D. Alsina, J. I. Latorre, B. Kraus, arXiv: 1701.02970.Google Scholar
  63. 63.
    S. M. Fei, Sci. China-Phys. Mech. Astron. 60, 020331 (2017).CrossRefGoogle Scholar
  64. 64.
    H. Y. Wang, W. Q. Zheng, N. K. Yu, K. R. Li, D. W. Lu, T. Xin, C. Li, Z. F. Ji, D. Kribs, B. Zeng, X. H. Peng, and J. F. Du, Sci. China-Phys. Mech. Astron. 59, 100313 (2016).CrossRefGoogle Scholar
  65. 65.
    G. F. Xu, L. C. Kwek, and D. M. Tong, Sci. China-Phys. Mech. Astron. 55, 808 (2012).CrossRefGoogle Scholar
  66. 66.
    H. Barnum, M. A. Nielsen, and B. Schumacher, Phys. Rev. A 57, 4153 (1998).CrossRefGoogle Scholar
  67. 67.
    S. Lloyd, Phys. Rev. A 55, 1613 (1997).MathSciNetCrossRefGoogle Scholar
  68. 68.
    F. G. Deng, B. C. Ren, and X. H. Li, Sci. Bull. 62, 46 (2017).CrossRefGoogle Scholar
  69. 69.
    G. Smith, and J. Yard, Science 321, 1812 (2008).MathSciNetCrossRefGoogle Scholar
  70. 70.
    A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).CrossRefGoogle Scholar
  71. 71.
    Y. Liu, G. L. Long, and Y. Sun, Int. J. Quantum Inform. 6, 447 (2008).CrossRefGoogle Scholar
  72. 72.
    M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, Phys. Rev. Lett. 93, 130502 (2004).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Low-Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Tsinghua National Laboratory of Information Science and TechnologyBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations