Formation of a monolayer h-BN nanomesh on Rh (111) studied using in-situ STM

  • GuoCai Dong
  • Yi ZhangEmail author
  • Joost W. M. FrenkenEmail author


As a member of the 2D family of materials, h-BN is an intrinsic insulator and could be employed as a dielectric or insulating inter-layer in ultra-thin devices. Monolayer h-BN can be synthesized on Rh (111) surfaces using borazine as a precursor. Using in-situ variable-temperature scanning tunneling microscopy (STM), we directly observed the formation of h in real-time. By analyzing the deposition under variable substrate temperatures and the filling rate of the h-BN overlayer vacant hollows during growth, we studied the growth kinetics of how the borazine molecules construct the h-BN overlayer grown on the Rh surface.


hexagonal boron nitride STM nanomesh 


  1. 1.
    M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013).CrossRefGoogle Scholar
  2. 2.
    S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, ACS Nano 7, 2898 (2013).CrossRefGoogle Scholar
  3. 3.
    T. Niu, and A. Li, Prog. Surf. Sci. 90, 21 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Nat. Nanotech. 9, 768 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    J. Yoon, W. Park, G. Y. Bae, Y. Kim, H. S. Jang, Y. Hyun, S. K. Lim, Y. H. Kahng, W. K. Hong, B. H. Lee, and H. C. Ko, Small 9, 3295 (2013).Google Scholar
  6. 6.
    W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotech. 9, 794 (2014), arXiv: 1503.02743.ADSCrossRefGoogle Scholar
  7. 7.
    Z. Liu, J. Gao, G. Zhang, Y. Cheng, and Y. W. Zhang, Nanotechnology 28, 385704 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano Lett. 10, 5049 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Lin, and J. W. Connell, Nanoscale 4, 6908 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, and Z. Mi, Nano Lett. 17, 3738 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    R. Bourrellier, S. Meuret, A. Tararan, O. Stéphan, M. Kociak, L. H. G. Tizei, and A. Zobelli, Nano Lett. 16, 4317 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hattori, T. Taniguchi, K. Watanabe, and K. Nagashio, ACS Nano 9, 916 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Hattori, T. Taniguchi, K. Watanabe, and K. Nagashio, Appl. Phys. Lett. 109, 253111 (2016), arXiv: 1612.07557.ADSCrossRefGoogle Scholar
  14. 14.
    W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie, and A. Zettl, Appl. Phys. Lett. 98, 242105 (2011), arXiv: 1105.4938.ADSCrossRefGoogle Scholar
  15. 15.
    J. Xie, Z. Y. Zhang, D. Z. Yang, M. S. Si, and D. S. Xue, arXiv: 161003185v2.Google Scholar
  16. 16.
    C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotech. 5, 722 (2010), arXiv: 1005.4917.ADSCrossRefGoogle Scholar
  17. 17.
    N. Kharche, and S. K. Nayak, Nano Lett. 11, 5274 (2011), arXiv: 1110.5702.ADSCrossRefGoogle Scholar
  18. 18.
    G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007), arXiv: 0704.1994.ADSCrossRefGoogle Scholar
  19. 19.
    W. Aggoune, C. Cocchi, D. Nabok, K. Rezouali, M. Akli Belkhir, and C. Draxl, J. Phys. Chem. Lett. 8, 1464 (2017).CrossRefGoogle Scholar
  20. 20.
    H. Wang, D. Lu, J. Kim, Z. Wang, S. T. Pi, and R. Q. Wu, Nanoscale 9, 2974 (2017).CrossRefGoogle Scholar
  21. 21.
    K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, ACS Nano 6, 8583 (2012).CrossRefGoogle Scholar
  22. 22.
    M. P. Levendorf, C. J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, Nature 488, 627 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    C. Zhang, S. Zhao, C. Jin, A. L. Koh, Y. Zhou, W. Xu, Q. Li, Q. Xiong, H. Peng, and Z. Liu, Nat. Commun. 6, 6519 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    G. Dong, E. B. Fourré, F. C. Tabak, and J. W. M. Frenken, Phys. Rev. Lett. 104, 096102 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    R. Laskowski, and P. Blaha, Phys. Rev. B 81, 075418 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    F. Müller, S. Hüfner, H. Sachdev, R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B 82, 113406 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, Nano Lett. 10, 3209 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    G. Kim, A. R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang, and H. S. Shin, Nano Lett. 13, 1834 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Science 303, 217 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    A. P. Farkas, P. Török, F. Solymosi, J. Kiss, and Z. Kónya, Appl. Surf. Sci. 354, 367 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kamerlingh Onnes LaboratoryLeiden UniversityLeidenThe Netherlands
  2. 2.National Laboratory of Solid State Microstructure, School of Physics, Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina
  3. 3.Jiangnan Graphene Research InstituteChangzhouChina
  4. 4.Advanced Research Center of NanolithographyAmsterdamThe Netherlands

Personalised recommendations