Quantitative conditions for time evolution in terms of the von Neumann equation

  • WenHua Wang
  • HuaiXin Cao
  • ZhengLi ChenEmail author
  • Lie Wang


The adiabatic theorem describes the time evolution of the pure state and gives an adiabatic approximate solution to the Schödinger equation by choosing a single eigenstate of the Hamiltonian as the initial state. In quantum systems, states are divided into pure states (unite vectors) and mixed states (density matrices, i.e., positive operators with trace one). Accordingly, mixed states have their own corresponding time evolution, which is described by the von Neumann equation. In this paper, we discuss the quantitative conditions for the time evolution of mixed states in terms of the von Neumann equation. First, we introduce the definitions for uniformly slowly evolving and δ-uniformly slowly evolving with respect to mixed states, then we present a necessary and sufficient condition for the Hamiltonian of the system to be uniformly slowly evolving and we obtain some upper bounds for the adiabatic approximate error. Lastly, we illustrate our results in an example.


quantitative condition time evolution uniformly slowly evolving δ-uniformly slowly evolving upper bound 


  1. 1.
    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).zbMATHGoogle Scholar
  2. 2.
    L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co., Inc., New York, 1949).Google Scholar
  3. 3.
    T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950).CrossRefGoogle Scholar
  4. 4.
    B. Simon, Phys. Rev. Lett. 51, 2167 (1983).MathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Chen, and Y. Li, Sci. China-Phys. Mech. Astron. 59, 640302 (2016).CrossRefGoogle Scholar
  6. 6.
    M. V. Berry, Proc. R. Soc. A-Math. Phys. Eng. Sci. 392, 45 (1984).CrossRefGoogle Scholar
  7. 7.
    E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv: quantph/0001106v1.Google Scholar
  8. 8.
    D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett. 98, 150402 (2007).CrossRefGoogle Scholar
  9. 9.
    J. D. Wu, M. S. Zhao, J. L. Chen, and Y. D. Zhang, arXiv: quantph/0706.0264.Google Scholar
  10. 10.
    A. Ambainis, and O. Regev, arXiv: quant-ph/0411152v2.Google Scholar
  11. 11.
    J. Sun, S. F. Lu, and F. Liu, Sci. China-Phys. Mech. Astron. 55, 1630 (2012).CrossRefGoogle Scholar
  12. 12.
    H. X. Cao, Z. H. Guo, Z. L. Chen, and W. H. Wang, Sci. China-Phys. Mech. Astron. 56, 1401 (2013).CrossRefGoogle Scholar
  13. 13.
    W. H. Wang, Z. H. Guo, and H. X. Cao, Sci. China-Phys. Mech. Astron. 57, 218 (2014).CrossRefGoogle Scholar
  14. 14.
    Z. H. Guo, H. X. Cao, and L. Lu, Sci. China-Phys. Mech. Astron. 57, 1835 (2014).CrossRefGoogle Scholar
  15. 15.
    B. M. Yu, H. X. Cao, Z. H. Guo, and W. H. Wang, Sci. China-Phys. Mech. Astron. 57, 2031 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Jing, and L. A. Wu, Sci. Bull. 60, 328 (2015).CrossRefGoogle Scholar
  17. 17.
    W. H. Wang, H. X. Cao, L. Lu, and B. M. Yu, Sci. China-Phys. Mech. Astron. 58, 030001 (2015).Google Scholar
  18. 18.
    Z. Yin, and Z. Wei, Sci. Bull. 62, 741 (2017).CrossRefGoogle Scholar
  19. 19.
    H. Li, Y. Liu, and G. L. Long, Sci. China-Phys. Mech. Astron. 60, 080311 (2017).CrossRefGoogle Scholar
  20. 20.
    G. F. Xu, Sci. China-Phys. Mech. Astron. 61, 010331 (2018).CrossRefGoogle Scholar
  21. 21.
    M. Berman, and R. Kosloff, Comput. Phys. Commun. 63, 1 (1991).CrossRefGoogle Scholar
  22. 22.
    S. J. Wang, D. Zhao, H. G. Luo, L. X. Cen, and C. L. Jia, Phys. Rev. A 64, 052102 (2001).MathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Tian, and G. H. Chen, J. Chem. Phys. 137, 204114 (2012).CrossRefGoogle Scholar
  24. 24.
    K. S. Khalid, L. Schulz, and D. Schulz, IEEE Trans. Nanotechnol. 16, 1053 (2017).CrossRefGoogle Scholar
  25. 25.
    J. da Providencia, M. Yamamura, and A. Kuriyama, Prog. Theor. Phys. 85, 939 (1991).CrossRefGoogle Scholar
  26. 26.
    V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Russ. Laser Res. 20, 421 (1999).CrossRefGoogle Scholar
  27. 27.
    A. Uhlmann, Sci. China-Phys. Mech. Astron. 59, 630301 (2016).CrossRefGoogle Scholar
  28. 28.
    A. C. Aguiar Pinto, K. M. Fonseca Romero, and M. T. Thomaz, Physica A 311, 169 (2002).CrossRefGoogle Scholar
  29. 29.
    K. J. H. Giesbertz, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 133, 174119 (2010).CrossRefGoogle Scholar
  30. 30.
    T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi, arXiv: 1206.4197v2.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • WenHua Wang
    • 1
  • HuaiXin Cao
    • 2
  • ZhengLi Chen
    • 2
    Email author
  • Lie Wang
    • 2
  1. 1.School of Ethnic EducationShaanxi Normal UniversityXi’anChina
  2. 2.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations