Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

  • Yanshuo Ni
  • Konstantin Turitsyn
  • Hexi Baoyin
  • Li Junfeng
Article
  • 12 Downloads

Abstract

This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

Keywords

quasi-periodic trajectories entropy quality evaluating 

PACS number(s)

02.70.Hm 96.25.De 96.25.Nc 96.30.Ys 

References

  1. 1.
    M. J. S. Belton, J. Veverka, P. Thomas, P. Helfenstein, D. Simonelli, C. Chapman, M. E. Davies, R. Greeley, R. Greenberg, J. Head, S. Murchie, K. Klaasen, T. V. Johnson, A. McEwen, D. Morrison, G. Neukum, F. Fanale, C. Anger, M. Carr, and C. Pilcher, Science 257, 1647 (1992).CrossRefADSGoogle Scholar
  2. 2.
    D. S. Lauretta, and OSIRIS-Rex Team, in An Overview of the OSIRISREx Asteroid Sample Return Mission: Proceedings of the 43rd Lunar and Planetary Science Conference, The Woodlands, Texas (2012).Google Scholar
  3. 3.
    J. Veverka, B. Farquhar, M. Robinson, P. Thomas, S. Murchie, A. Harch, P. G. Antreasian, S. R. Chesley, J. K. Miller, W. M. Owen, B. G. Williams, D. Yeomans, D. Dunham, G. Heyler, M. Holdridge, R. L. Nelson, K. E. Whittenburg, J. C. Ray, B. Carcich, A. Cheng, C. Chapman, J. F. Bell, M. Bell, B. Bussey, B. Clark, D. Domingue, M. J. Gaffey, E. Hawkins, N. Izenberg, J. Joseph, R. Kirk, P. Lucey, M. Malin, L. McFadden, W. J. Merline, C. Peterson, L. Prockter, J. Warren, and D. Wellnitz, Nature 413, 390 (2001).CrossRefADSGoogle Scholar
  4. 4.
    K. H. Glassmeier, H. Boehnhardt, D. Koschny, E. Kührt, and I. Richter, Space Sci. Rev. 128, 1 (2007).CrossRefADSGoogle Scholar
  5. 5.
    A. Tsuchiyama, M. Uesugi, T. Matsushima, T. Michikami, T. Kadono, T. Nakamura, K. Uesugi, T. Nakano, S. A. Sandford, R. Noguchi, T. Matsumoto, J. Matsuno, T. Nagano, Y. Imai, A. Takeuchi, Y. Suzuki, T. Ogami, J. Katagiri, M. Ebihara, T. R. Ireland, F. Kitajima, K. Nagao, H. Naraoka, T. Noguchi, R. Okazaki, H. Yurimoto, M. E. Zolensky, T. Mukai, M. Abe, T. Yada, A. Fujimura, M. Yoshikawa, and J. Kawaguchi, Science 333, 1125 (2011).CrossRefADSGoogle Scholar
  6. 6.
    C. T. Russell, and C. A. Raymond, Space. Sci. Rev. 163, 3 (2011).CrossRefADSGoogle Scholar
  7. 7.
    Y. Guo, and R. W. Farquhar, Space. Sci. Rev. 140, 49 (2008).CrossRefADSGoogle Scholar
  8. 8.
    X. Wang, Y. Jiang, and S. Gong, Astrophys. Space Sci. 353, 105 (2014), arXiv: 1403.5025CrossRefADSGoogle Scholar
  9. 9.
    X. Liu, H. Baoyin, and X. Ma, Astrophys. Space Sci. 333, 409 (2011), arXiv: 1108.4636CrossRefADSGoogle Scholar
  10. 10.
    Y. Jiang, J. A. Schmidt, H. Li, X. Liu, and Y. Yang, Astrodynamics 2, 69 (2018).CrossRefGoogle Scholar
  11. 11.
    X. Zeng, and K. T. Alfriend, Astrodynamics 1, 41 (2017).CrossRefGoogle Scholar
  12. 12.
    L. Lan, Y. Ni, Y. Jiang, and J. Li, Acta Mech. Sin. 34, 214 (2018).MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    H. Yang, H. Baoyin, X. Bai, and J. Li, Astrophys. Space Sci. 362, 27 (2017).CrossRefADSGoogle Scholar
  14. 14.
    Y. Jiang, H. Baoyin, X. Wang, Y. Yu, H. Li, C. Peng, and Z. Zhang, Nonlinear Dyn. 83, 231 (2016).CrossRefGoogle Scholar
  15. 15.
    A. Riaguas, A. Elipe, and M. Lara, Celestial Mech. Dynamical Astron. 73, 169 (1999).CrossRefADSGoogle Scholar
  16. 16.
    S. Gutierrez-Romero, J. F. Palacian, and P. Yanguas, Monogr Real Acad Cienc Zaragoza 25, 137 (2004).Google Scholar
  17. 17.
    W. Hu, and D. J. Scheeres, Planet. Space Sci. 52, 685 (2004).CrossRefADSGoogle Scholar
  18. 18.
    W. D. Hu, and D. J. Scheeres, Chin. J. Astron. Astrophys. 8, 108 (2008).CrossRefADSGoogle Scholar
  19. 19.
    X. D. Liu, H. X. Baoyin, and X. R. Ma, Sci. China-Phys. Mech. Astron. 56, 818 (2013).CrossRefADSGoogle Scholar
  20. 20.
    X. Zeng, F. Jiang, J. Li, and H. Baoyin, Astrophys. Space Sci. 356, 29 (2015).CrossRefADSGoogle Scholar
  21. 21.
    D. J. Scheeres, S. J. Ostro, R. S. Hudson, and R. A. Werner, Icarus 121, 67 (1996).CrossRefADSGoogle Scholar
  22. 22.
    R. A. Werner, Celestial Mech. Dynamical Astron. 59, 253 (1994).CrossRefADSGoogle Scholar
  23. 23.
    X. Zeng, K. T. Alfriend, and S. R. Vadali, J. Guid. Control Dyn. 37, 674 (2014).CrossRefADSGoogle Scholar
  24. 24.
    X. Zeng, and X. Liu, IEEE Trans. Aerosp. Electron. Syst. 53, 1221 (2017).CrossRefADSGoogle Scholar
  25. 25.
    Y. Yu, and H. Baoyin, Mon. Not. R. Astron. Soc. 427, 872 (2012).CrossRefADSGoogle Scholar
  26. 26.
    K. Meyer, G. Hall, and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-body Problem, 2nd ed. (Springer-Verlag, New York, 2009), Chapt. 9.MATHGoogle Scholar
  27. 27.
    Y. Ni, H. Baoyin, and J. Li, Orbit Dynamics in the Vicinity of Asteroids with Solar Perturbation: Proceedings of the International Astronautical Congress, Vol. 7, (2014), pp. 4610–4620.Google Scholar
  28. 28.
    Y. Jiang, Y. Yu, and H. Baoyin, Nonlinear Dyn. 81, 119 (2015).CrossRefGoogle Scholar
  29. 29.
    Y. Jiang, H. Baoyin, and H. Li, Astrophys. Space Sci. 360, 63 (2015), arXiv: 1511.07926CrossRefADSGoogle Scholar
  30. 30.
    J. E. Marsden, and T. S. Ratiu, Introduction to Mechanics and Symmetry (Springer-Verlag, New York, 1999), Chapt. 5.CrossRefMATHGoogle Scholar
  31. 31.
    R. A. Broucke, and A. Elipe, Reg. Chaot. Dyn. 10, 129 (2005).CrossRefGoogle Scholar
  32. 32.
    Y. Yu, H. Baoyin, and Y. Jiang, Mon. Not. R. Astron. Soc. 453, 3270 (2015).CrossRefADSGoogle Scholar
  33. 33.
    Y. Ni, Y. Jiang, and H. Baoyin, Astrophys. Space Sci. 361, 170 (2016), arXiv: 1604.07226CrossRefADSGoogle Scholar
  34. 34.
    D. C. Davis, and K. C. Howell, Acta Astronaut. 69, 1038 (2011).CrossRefADSGoogle Scholar
  35. 35.
    D. C. Davis, and K. C. Howell, J. Guid. Control Dyn. 35, 116 (2012).CrossRefADSGoogle Scholar
  36. 36.
    D. J. Scheeres, Acta Astronaut. 72, 1 (2012).CrossRefADSGoogle Scholar
  37. 37.
    D. J. Scheeres, J. Guid. Control Dyn. 35, 987 (2012).CrossRefGoogle Scholar
  38. 38.
    T. G. G. Chanut, O. C. Winter, and M. Tsuchida, Mon. Not. R. Astron. Soc. 438, 2672 (2014).CrossRefADSGoogle Scholar
  39. 39.
    A. Elipe, and M. Lara, J Astronaut. Sci. 51, 391 (2003).MathSciNetGoogle Scholar
  40. 40.
    E. Ott, Chaos in Dynamical Systems, 2nd ed. (Cambridge University Press, New York, 2002), Chapt. 6.CrossRefMATHGoogle Scholar
  41. 41.
    H. L. Swinney, and J. P. Gollub, Phys. Today 31, 41 (1978).CrossRefGoogle Scholar
  42. 42.
    P. Robutel, and J. Laskar, Icarus 152, 4 (2001).CrossRefADSGoogle Scholar
  43. 43.
    D. A. Dei Tos, and F. Topputo, Adv. Space Res. 59, 2117 (2017).CrossRefADSGoogle Scholar
  44. 44.
    G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Meccanica 15, 9 (1980).CrossRefADSGoogle Scholar
  45. 45.
    M. Fouchard, E. Lega, C. Froeschlé, and C. Froeschlé, Celest. Mech. Dyn. Astron. 83, 205 (2002).CrossRefADSGoogle Scholar
  46. 46.
    P. M. Cincotta, and C. Simó, Astron. Astrophys. Suppl. Ser. 147, 205 (2000).CrossRefADSGoogle Scholar
  47. 47.
    A. N. Kolmogorov, Proc. USSR Acad. Sci. 119, 861 (1958).Google Scholar
  48. 48.
    Y. G. Sinai, Proc. USSR Acad. Sci. 124, 768 (1959).Google Scholar
  49. 49.
    M. Henon, and C. Heiles, Astron. J. 69, 73 (1964).CrossRefADSGoogle Scholar
  50. 50.
    V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies (Academic, New York, 1967), p. 126.CrossRefMATHGoogle Scholar
  51. 51.
    X. Zeng, S. Gong, J. Li, and K. T. Alfriend, J. Guidance Control Dyn. 39, 1223 (2016).CrossRefADSGoogle Scholar
  52. 52.
    H. W. Yang, X. Y. Zeng, and H. Baoyin, Res. Astron. Astrophys. 15, 1571 (2015).CrossRefADSGoogle Scholar
  53. 53.
    M. Hénon, Ann. Astrophys. 28, 499 (1965).ADSGoogle Scholar
  54. 54.
    L. Wilson, K. Keil, and S. J. Love, Meteoritics Planet. Sci. 34, 479 (1999).CrossRefADSGoogle Scholar
  55. 55.
    D. Vokrouhlický, D. Nesvorný, and W. F. Bottke, Nature 425, 147 (2003).CrossRefADSGoogle Scholar
  56. 56.
    S. R. Chesley, S. J. Ostro, D. Vokrouhlicky, D. Capek, J. D. Giorgini, M. C. Nolan, J. L. Margot, A. A. Hine, L. A. M. Benner, and A. B. Chamberlin, Science 302, 1739 (2003).CrossRefADSGoogle Scholar
  57. 57.
    R. S. Hudson, S. J. Ostro, R. F. Jurgens, K. D. Rosema, J. D. Giorgini, R. Winkler, R. Rose, D. Choate, R. A. Cormier, C. R. Franck, R. Frye, D. Howard, D. Kelley, R. Littlefair, M. A. Slade, L. A. M. Benner, M. L. Thomas, D. L. Mitchell, P. W. Chodas, D. K. Yeomans, D. J. Scheeres, P. Palmer, A. Zaitsev, Y. Koyama, A. Nakamura, A. W. Harris, and M. N. Meshkov, Icarus 148, 37 (2000).CrossRefADSGoogle Scholar
  58. 58.
    C. E. Neese, Small Body Radar Shape Models V2.0. EAR-A-5-DDRRADARSHAPE-MODELS-V2.0 (NASA Planetary Data System, 2004).Google Scholar
  59. 59.
    Y. Yu, and H. Baoyin, Astron. J. 143, 62 (2012).CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanshuo Ni
    • 1
  • Konstantin Turitsyn
    • 2
  • Hexi Baoyin
    • 1
  • Li Junfeng
    • 1
  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations