Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity

Article
  • 3 Downloads

Abstract

Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed because of various quantum no-go theorems. In this paper, to avoid these theorems in quantum multiple-source networks, we present a photonic strategy by exploring quantum transferring approaches assisted by the weak cross-Kerr nonlinearity. The internal node may nearly deterministically fuse all incoming photons into a single photon with multiple modes. The fused single photon may be transmitted using two- photonic hyperentanglement as a quantum resource. The quantum splitting as the inverse operation of the quantum fusion allows forwarding quantum states under the quantum no-cloning theorem. Furthermore, quantum addressing schemes are presented to complete the quantum transmissions on multiple-source networks going beyond the classical network broadcasts or quantum n-pair transmissions in terms of their reduced forms.

Keywords

photonic network transmission quantum fusion quantum teleportation cross-Kerr nonlinearity 

References

  1. 1.
    J. L. Gross, and J. Yellen, Graph Theory and Its Applications (CRC Press, Boca Raton, 2006).MATHGoogle Scholar
  2. 2.
    S. Floyd, and K. Fall, IEEE/ACM Trans. Network. 7, 458 (1999).CrossRefGoogle Scholar
  3. 3.
    R. Ahlswede, R. N. Cai, S. Y. R. Li, and R. W. Yeung, IEEE Trans. Inform. Theor. 46, 1204 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Y. R. Li, R. W. Yeung, and N. Cai, IEEE Trans. Inform. Theor. 49, 371 (2003).CrossRefGoogle Scholar
  5. 5.
    S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M. Tolhuizen, IEEE Trans. Inform. Theor. 51, 1973 (2005).CrossRefGoogle Scholar
  6. 6.
    T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, IEEE Trans. Inform. Theor. 52, 4413 (2006).CrossRefGoogle Scholar
  7. 7.
    R. W. Yeung, S. Y. R. Li, N. Cai, and Z. Zhang, FNT Commun. Inf. Theor. 2, 241 (2005).CrossRefGoogle Scholar
  8. 8.
    C. Fragouli, and E. Soljanin, FNT Network. 2, 1 (2006).CrossRefGoogle Scholar
  9. 9.
    C. Y. Leow, Z. Ding, K. K. Leung, and D. L. Goeckel, IEEE Trans. Wireless Commun. 10, 670 (2011).CrossRefGoogle Scholar
  10. 10.
    Z. Li, B. Li, and L. C. Lau, IEEE Trans. Inform. Theor. 55, 1016 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Maheshwar, Z. Li, and B. Li, IEEE Trans. Inform. Theor. 58, 570 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Hayashi, Phys. Rev. A 76, 040301 (2007).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Y. Ma, X. B. Chen, M. X. Luo, X. X. Niu, and Y. X. Yang, Opt. Commun. 283, 497 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    D. Leung, J. Oppenheim, and A. Winter, IEEE Trans. Inform. Theor. 56, 3478 (2010).CrossRefGoogle Scholar
  15. 15.
    H. Kobayashi, F. Le Gall, H. Nishimura, and M. Roeler, in General Scheme for Perfect Quantum Network Coding with Free Classical Communication: Automata, Languages and Programming, edited by S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas (Springer, Berlin Heidelberg, 2009), pp. 51–58.Google Scholar
  16. 16.
    H. Kobayashi, F. Le Gall, H. Nishimura, and M. Rotteler, in Constructing Quantum Network Coding Schemes from Classical Nonlinear Protocols: Proceedings 2011 IEEE International Symposium on Information Theory (ISIT2011) St. Petersburg, Russia, 31 July-5 August, 2011 (IEEE, Saint-Petersburg, 2011).CrossRefGoogle Scholar
  17. 17.
    W. K. Wootters, and W. H. Zurek, Nature 299, 802 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    M. X. Luo, H. R. Li, H. Lai, and X. Wang, Quantum Inf. Process. 16, 297 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, Nature 484, 195 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    T. Y. Chen, J. Wang, H. Liang, W. Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W. Q. Cai, L. Ju, L. K. Chen, L. J. Wang, Y. Gao, K. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Opt. Express 18, 27217 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    G. D. Paparo, and M. A. Martin-Delgado, Sci. Rep. 2, 444 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    J. Zhang, Y. Liu, K. Özdemir, R. B. Wu, F. Gao, X. B. Wang, L. Yang, and F. Nori, Sci. Rep. 3, 2211 (2013).CrossRefGoogle Scholar
  23. 23.
    H. J. Kimble, Nature 453, 1023 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    A. Chiuri, C. Greganti, M. Paternostro, G. Vallone, and P. Mataloni, Phys. Rev. Lett. 109, 173604 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    K. Nemoto, and W. J. Munro, Phys. Rev. Lett. 93, 250502 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    K. J. Zhang, L. Zhang, T. T. Song, and Y. H. Yang, Sci. China-Phys. Mech. Astron. 59, 660302 (2016).CrossRefGoogle Scholar
  27. 27.
    W. Qin, C. Wang, and G. L. Long, Phys. Rev. A 87, 012339 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    T. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).CrossRefGoogle Scholar
  29. 29.
    Q. Ai, Sci. Bull. 61,110(2016).CrossRefGoogle Scholar
  30. 30.
    W. Qin, C. Wang, Y. Cao, and G. L. Long, Phys. Rev. A 89, 062314 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    W. Qin, J. L. Li, and G. L. Long, Chin. Phys. B 24, 040305 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    W. Qin, and G. Long, Entropy 18, 179 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    B. Chen, and Y. Li, Sci. China-Phys. Mech. Astron. 59, 640302 (2016).CrossRefGoogle Scholar
  34. 34.
    Q. Lin, and J. Li, Phys. Rev. A 79, 022301 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    B. He, Y. Ren, and J. A. Bergou, Phys. Rev. A 79, 052323 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    B. He, Y. H. Ren, and J. A. Bergou, J. Phys. B-At. Mol. Opt. Phys. 43, 025502 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    Q. Lin, and B. He, Phys. Rev. A 80, 042310 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    Q. Lin, B. He, J. A. Bergou, and Y. Ren, Phys. Rev. A 80, 042311 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    B. He, Q. Lin, and C. Simon, Phys. Rev. A 83, 053826 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    Y. B. Sheng, and F. G. Deng, Phys. Rev. A 81, 032307 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    Y. B. Sheng, and L. Zhou, Sci. Rep. 5, 7815 (2015).CrossRefGoogle Scholar
  42. 42.
    Q. Lin, and B. He, Sci. Rep. 5, 12792 (2015).ADSCrossRefGoogle Scholar
  43. 43.
    Q. Lin, and B. He, Phys. Rev. A 82, 022331 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, Phys. Rev. A 85, 052326 (2012).ADSCrossRefGoogle Scholar
  45. 45.
    M. X. Luo, H. R. Li, and H. Lai, Sci. Rep. 6, 29939 (2016).ADSCrossRefGoogle Scholar
  46. 46.
    V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photon. 7, 138 (2013).ADSCrossRefGoogle Scholar
  47. 47.
    A. Feizpour, M. Hallaji, G. Dmochowski, and A. M. Steinberg, Nat. Phys. 11, 905 (2015).CrossRefGoogle Scholar
  48. 48.
    X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Nature 518, 516 (2015).ADSCrossRefGoogle Scholar
  49. 49.
    T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, Nat. Commun. 6, 7185 (2015).CrossRefGoogle Scholar
  50. 50.
    M. X. Luo, H. R. Li, H. Lai, and X. Wang, Phys. Rev. A 93, 012332 (2016).ADSCrossRefGoogle Scholar
  51. 51.
    C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, Nat. Photon 7, 521 (2013).ADSCrossRefGoogle Scholar
  52. 52.
    E. Passaro, C. Vitelli, N. Spagnolo, F. Sciarrino, E. Santamato, and L. Marrucci, Phys. Rev. A 88, 062321 (2013).ADSCrossRefGoogle Scholar
  53. 53.
    M. X. Luo, S. Y. Ma, X. B. Chen, and X. Wang, Phys. Rev. A 91, 042326 (2015).ADSCrossRefGoogle Scholar
  54. 54.
    R. Dougherty, C. Freiling, and K. Zeger, IEEE Trans. Inform. Theor. 51, 2745 (2005).CrossRefGoogle Scholar
  55. 55.
    R. Dougherty, C. Freiling, and K. Zeger, IEEE Trans. Inform. Theor. 51, 2745 (2005).CrossRefGoogle Scholar
  56. 56.
    S. Huang, and A. Ramamoorthy, IEEE/ACM Trans. Network. 22, 285 (2014).CrossRefGoogle Scholar
  57. 57.
    D. S. Simon, and A. V. Sergienko, New J. Phys. 16, 063052 (2014).ADSCrossRefGoogle Scholar
  58. 58.
    S. P. Walborn, Nat. Phys. 4, 268 (2008).CrossRefGoogle Scholar
  59. 59.
    A. El Gamal, and Y. H. Kim, Network Information Theory (Cambridge University Press, Cambridge, 2011).CrossRefMATHGoogle Scholar
  60. 60.
    J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010).ADSCrossRefGoogle Scholar
  61. 61.
    J. H. Shapiro, Phys. Rev. A 73, 062305 (2006).ADSCrossRefGoogle Scholar
  62. 62.
    P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).ADSCrossRefGoogle Scholar
  63. 63.
    P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 66, 063814 (2002).ADSCrossRefGoogle Scholar
  64. 64.
    C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, Phys. Rev. A 81, 062338 (2010).ADSCrossRefGoogle Scholar
  65. 65.
    E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, Opt. Express 18, 10750 (2010).ADSCrossRefGoogle Scholar
  66. 66.
    D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, Opt. Express 19, 870 (2011).ADSCrossRefGoogle Scholar
  67. 67.
    H. Myoren, S. Takeda, M. Naruse, T. Taino, J. Chen, and P. Wu, IEEE Trans. Appl. Supercond. 25, 1 (2015).CrossRefGoogle Scholar
  68. 68.
    Q. Weng, Z. An, B. Zhang, P. Chen, X. Chen, Z. Zhu, and W. Lu, Sci. Rep. 5, 9389 (2015).ADSCrossRefGoogle Scholar
  69. 69.
    S. Ding, G. Maslennikov, R. Hablützel, and D. Matsukevich, Phys. Rev. Lett. 119, 193602 (2017).ADSCrossRefGoogle Scholar
  70. 70.
    S. T. Le, V. Aref, and H. Buelow, Nat. Photon. 11, 570 (2017).CrossRefGoogle Scholar
  71. 71.
    M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys. Rev. Lett. 73, 58 (1994).ADSCrossRefGoogle Scholar
  72. 72.
    I. Dhand, and S. K. Goyal, Phys. Rev. A 92, 043813 (2015).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematical SciencesDezhou UniversityDezhouChina
  2. 2.Information Security and National Computing Grid LaboratorySouthwest Jiaotong UniversityChengduChina
  3. 3.School of Software EngineeringBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.Information Security Center, State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations