Skip to main content
Log in

Temperature dependence of the point defect properties of GaN thin films studied by terahertz time-domain spectroscopy

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The dielectric functions of GaN for the temperature and frequency ranges of 10-300 K and 0.3-1 THz are obtained using terahertz time-domain spectroscopy. It is found that there are oscillations of the dielectric functions at various temperatures. Physically, the oscillation behavior is attributed to the resonance states of the point defects in the material. Furthermore, the dielectric functions are well fitted by the combination of the simple Drude model together with the classical damped oscillator model. According to the values of the fitting parameters, the concentration and electron lifetime of the point defects for various temperatures are determined, and the temperature dependences of them are in accordance with the previously reported result. Therefore, terahertz time-domain spectroscopy can be considered as a promising technique for investigating the relevant characteristics of the point defects in semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearton S J, Zopler J C, Shul R J, et al. GaN: Processing, defects and devices. J Appl Phys, 1997, 86: 1–78; Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies. J Appl Phys, 1994, 76: 1363–1398

    Article  ADS  Google Scholar 

  2. Sohn J Y, Yahng J S, Park D J, et al. Nano seismology: Acoustic shock wave geberatin and terahertz emission from InGaN/GaN structures. In: Proceedings of the 28th International Symposium on Compound Semiconductors. Philadelphia, Pa: Taylor & Francis, 2001

    Google Scholar 

  3. Janotti A, Van de Walle C G. Native point defects in ZnO. Phys Rev B, 2007, 76: 165202

    Article  ADS  Google Scholar 

  4. Tuomisto F, Saarinen K, Lucznik B, et al. Effect of growth polarity on vacancy defect and impurity incorporation in dislocation-free GaN. Appl Phys Lett, 2005, 86: 031915

    Article  ADS  Google Scholar 

  5. Look D C, Fang Z Q, Claflin B. Identification of donors, acceptors and traps in bulk-like HVPE GaN. J Cryst Growth, 2005, 281: 143–150

    Article  ADS  Google Scholar 

  6. Tonouchi M. Cutting-edge terahertz technology. Nat Photon, 2007, 1: 97–105

    Article  ADS  Google Scholar 

  7. Singh R, Smirnova E, Taylor A J, et al. Optically thin terahertz metamaterials. Opt Express, 2008, 16: 6537

    Article  ADS  Google Scholar 

  8. Zhang X C, Beigang R, Tanaka K. Introduction: Terahertz wave photonics. J Opt Soc Am B, 2009, 26: TW1

    Article  ADS  Google Scholar 

  9. Zhang W, Azad A K, Grischkowsky D. Terahertz studies of carrier dymamics and dielectric response of n-type, freestanding epitaxial GaN. Appl Phys Lett, 2003, 82: 2841–2843

    Article  ADS  Google Scholar 

  10. Tsai T R, Chen S J, Chang C F, et al. Terahertz response of GaN thin films. Opt Express, 2006, 14: 4898–4907

    Article  ADS  Google Scholar 

  11. Nagashima T, Takata K, Nashima S, et al. Measurement of electrical properties of GaN thin films using terahertz-time domain spectroscopy. Jpn J Appl Phys, 2005, 44: 926–931

    Article  ADS  Google Scholar 

  12. Fang H N, Zhang R, Liu B, et al. Dielectric properties of GaN in THz frequencies. Chin Phys Lett, 2010, 27: 017802

    Article  ADS  Google Scholar 

  13. Grischkowsky D, Keiding S, Exter M V, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B, 1990, 7: 2006–2015

    Article  ADS  Google Scholar 

  14. Duvillaret L, Garet F, Coutaz J L, et al. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J Sel Top Quant Electron, 1996, 2: 739–746

    Article  Google Scholar 

  15. Guo H C, Zhang X H, Liu W, et al. Terahertz carrier dynamics and dielectric properties of GaN epilayers with different carrier concentrations. J Appl Phys, 2009, 106: 063104

    Article  ADS  Google Scholar 

  16. Anderson P W. Localized magnetic states in metals. Phys Rev, 1961, 124: 41–53

    Article  MathSciNet  ADS  Google Scholar 

  17. Reshchikov M A, Morcok H. Luminescence properties of defects in GaN. J Appl Phys, 2005, 97: 061301

    Article  ADS  Google Scholar 

  18. Kornitzer K, Ebner T, Thonke K, et al. Photoluminescence and reflectance spectroscopy of excitonic transitions in high-quality homoepitaxial GaN films. Phys Rev B, 1999, 60: 1471–1473

    Article  ADS  Google Scholar 

  19. Look D C, Molnar R J. Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements. Appl Phys Lett, 1997, 70: 3377–3379

    Article  ADS  Google Scholar 

  20. Tan T Y. Point defects and diffusion mechanisms pertinent to the Ga sublattice of GaAs. Mater Chem Phys, 1995, 40: 245–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Zhang or Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, H., Zhang, R., Liu, B. et al. Temperature dependence of the point defect properties of GaN thin films studied by terahertz time-domain spectroscopy. Sci. China Phys. Mech. Astron. 56, 2059–2064 (2013). https://doi.org/10.1007/s11433-013-5202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5202-6

Keywords

Navigation