Skip to main content
Log in

Controllability of spin 1 systems and realization of ternary SWAP gate in two spin 1 systems coupled with Ising interaction

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we investigate the controllability of spin 1 systems and the realization of ternary gates. Using dipole and quadrupole operators as the orthogonal basis of su(3) algebra, we discuss the controllability of one spin 1 systems and offer the concept of a complete set of control operators first. Then we present the controllability of two spin 1 systems coupled with Ising interaction and the transforming relations of the drift process of the system. Finally the specific realization of the ternary SWAP gate in these systems is discussed. It takes 9 drift processes and 25 basic control processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. Rabitz H, Vivie-Riedle R D, Motzkus M, et al. Whither the future of controlling quantum phenomena. Science, 2000, 288: 824–828

    Article  ADS  Google Scholar 

  3. Huang G M, Tarn T J, Clark J W. On the controllability of quantum mechanical systems. J Math Phys, 1983, 24: 2608–2618

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Ong C K, Huang G M, Tarn T J, et al. Inversibility of quantum-mechanical control systems. Math Syst Theor, 1984, 17: 335–350

    Article  MATH  MathSciNet  Google Scholar 

  5. Clark J W, Ong C K, Tarn T J, et al. Quantum nondemolition filters. Math Syst Theor, 1985, 18: 33–35

    Article  MATH  MathSciNet  Google Scholar 

  6. Bechmann-Pasquinucci H, Peres A. Quantum cryptography with 3-state systems. Phys Rev Lett, 2000, 85: 3313–3316

    Article  MathSciNet  ADS  Google Scholar 

  7. Cao Y, Wang A M, Ma X S, et al. Multi-particle and high-dimension controlled order rearrangement encryption protocols. Eur Phys J D, 2007, 44: 607–617

    Article  ADS  Google Scholar 

  8. Li X H, Deng F G, Zhou H Y. Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger-Horne-Zeilinger states. Chin Phys Lett, 2007, 24: 1151–1153

    Article  ADS  Google Scholar 

  9. Zhang X H, Yang Z Y, Xu P P. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom. Sci China Ser G-Phys Mech Astron, 2009, 52: 1034–1038

    Article  ADS  Google Scholar 

  10. Tian D P, Tao Y J, Qin M. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci China Ser G-Phys Mech Astron, 2008, 51: 1523–1528

    Article  ADS  Google Scholar 

  11. Brukner C, Zukowski M, Zeilinger A. Quantum communication complexity protocol with two entangled qutrits. Phys Rev Lett, 2002, 89: 197901

    Article  ADS  Google Scholar 

  12. Grudka A, Wojcik A. How to encode the states of two non-entangled qubits in one qutrit. Phys Lett A, 2003, 314: 350–353

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multi-parties. Phys Rev A, 2002, 65: 022304

    Article  ADS  Google Scholar 

  14. Zhou D L, Zeng B, Xu Z, et al. Quantum computation based on d-level cluster state. Phys Rev A, 2003, 68: 062303

    Article  ADS  Google Scholar 

  15. Yang G W, Song X Y, Perkowski M, et al. Realizing ternary quantum switching networks without ancilla bits. J Phys A-Math Gen, 2005, 38: 9689–9697

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Lin X M, Zhou Z Y, Wu Y C, et al. Preparation of two-qutrit entangled state in cavity QED. Chin Phys Lett, 2005, 22: 1318–1320

    Article  ADS  Google Scholar 

  17. Tay B A, Zainuddin H. Orbit classification of qutrit via the gram matrix. Chin Phys Lett, 2008, 25: 1923–1926

    Article  ADS  Google Scholar 

  18. Cao W C, Liu X S, Bai H B, et al. Bang-bang control suppression of amplitude damping in a three-level atom. Sci China Ser G-Phys Mech Astron, 2008, 51: 29–37

    Article  MATH  ADS  Google Scholar 

  19. D’Alessandro D. Controllability, observability and parameter identification of two coupled spin 1’s. IEEE Trans Autom Control, 2005, 50: 1054–1058

    Article  MathSciNet  Google Scholar 

  20. Khan F S, Perkowski M. Synthesis of ternary quantum logic circuits by decomposition. In: Proceedings of the 7th International Symposium on Representations and Methodology of Future Computing Technologies RM2005, Tokyo, Japan, 2005

  21. Helgason S. Differential Geometry, Lie Groups and Symmetric Spaces. New York: Academic, 1978

    MATH  Google Scholar 

  22. Khaneja N, Glaser S J. Cartan decomposition of SU(2n) and control of spin systems. J Chem Phys, 2001, 267: 11–23

    Article  Google Scholar 

  23. Di Y M, Zhang J, Wei H R. Cartan decomposition of a two-qutrit gate. Sci China Ser G-Phys Mech Astron, 2008, 51: 1668–1676

    Article  ADS  Google Scholar 

  24. Zhang J, Di Y M, Wei H R. Realization of two-qutrit quantum gates with control pulses. Commun Theor Phys, 2009, 51: 653–658

    Article  MATH  MathSciNet  Google Scholar 

  25. Di Y M, Wang Y, Wei H R. Dipole-quadrupole decomposition of two coupled spin 1 systems. J Phys A-Math Theor, 2010, 43: 065303

    Article  MathSciNet  ADS  Google Scholar 

  26. Albertini F, D’Alessandro D. The Lie algebra structure and controllability of spin systems. Linear Algebra Appl, 2002, 350: 213–235

    MATH  MathSciNet  Google Scholar 

  27. Kim J, Lee J S, Lee S. Implementing unitary operators in quantum computation. Phys Rev A, 2000, 61: 032312

    Article  MathSciNet  ADS  Google Scholar 

  28. Wei H R, Di Y M, Wang Y, et al. Note on implementation of three-qubit SWAP gate. Commun Theor Phys, 2010, 53: 78–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaoMin Di.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Di, Y. & Wei, H. Controllability of spin 1 systems and realization of ternary SWAP gate in two spin 1 systems coupled with Ising interaction. Sci. China Phys. Mech. Astron. 53, 1873–1877 (2010). https://doi.org/10.1007/s11433-010-4110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4110-2

Keywords

Navigation