Advertisement

Variation of a signal in Schwarzschild spacetime

  • Huan LiuEmail author
  • Xiang-Gen Xia
  • Ran Tao
Research Paper

Abstract

In this paper, the variation of a signal in Schwarzschild spacetime is studied and a general equation for frequency shift parameter (FSP) is presented. The FSP is found to depend on the gravitationally modified Doppler effects and the gravitational effects of observers. In addition, the time rates of a transmitter and receiver may differ. When the FSP is a function of the receiver time, the FSP contributed through the gravitational effect (GFSP) or the gravitationally modified Doppler effect (GMDFSP) may convert a bandlimited signal into a non-bandlimited signal. Using the general equation, the FSP as a function of receiver time is calculated in three scenarios: (a) a spaceship leaving a star at constant velocity communicating with a transmitter at a fixed position; (b) a spaceship moving around a star with different conic trajectories communicating with a transmitter at a fixed position; and (c) a signal transmitted from a fixed position in a star system to a receiver following an elliptic trajectory in another star system. The studied stars are a Sun-like star, a white dwarf, and a neutron star. The theory is illustrated with numerical examples.

Keywords

deep space communications general relativity Schwarzschild spacetime bandlimited signal gravitationally modified Doppler effect 

Notes

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61421001, 61331021, U1833203).

References

  1. 1.
    Barnes B. In a breathtaking first, NASA craft exits the solar system. New York Times, 2013Google Scholar
  2. 2.
    Gill V. NASA’s Voyager 2 probe ‘leaves the solar system’. BBC News, 2018Google Scholar
  3. 3.
    Zhao K L, Zhang Q Y. Network protocol architectures for future deep-space internetworking. Sci China Inf Sci, 2018, 61: 040303MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wu W, Tang Y H, Zhang L H, et al. Design of communication relay mission for supporting lunar-farside soft landing. Sci China Inf Sci, 2018, 61: 040305MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wan P, Zhan Y F, Pan X H. Solar system interplanetary communication networks: architectures, technologies and developments. Sci China Inf Sci, 2018, 61: 040302CrossRefGoogle Scholar
  6. 6.
    Pan X H, Zhan Y F, Wan P, et al. Review of channel models for deep space communications. Sci China Inf Sci, 2018, 61: 040304CrossRefGoogle Scholar
  7. 7.
    Wu S, Li D Z, Wang Z Y, et al. Novel distributed UEP rateless coding scheme for data transmission in deep space networks. Sci China Inf Sci, 2018, 61: 040306MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wu W, Chen M, Zhang Z, et al. Overview of deep space laser communication. Sci China Inf Sci, 2018, 61: 040301MathSciNetCrossRefGoogle Scholar
  9. 9.
    Einstein A. Die feldgleichungen der gravitation. In: Das Relativitatsprinzip. Berlin: Springer, 1915. 137–141Google Scholar
  10. 10.
    Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. 1916. http://adsabs.harvard.edu/abs/1916SPAW.......189S
  11. 11.
    Schwarzschild K. Uber das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie. 1916. http://adsabs.harvard.edu/abs/1916skpa.conf..424S
  12. 12.
    Pound R V, Rebka G A J. Gravitational red-shift in nuclear resonance. Phys Rev Lett, 1959, 3: 439–441CrossRefGoogle Scholar
  13. 13.
    Pound R V, Snider J L. Effect of gravity on Gamma radiation. Phys Rev, 1965, 140: 788–803CrossRefGoogle Scholar
  14. 14.
    Snider J L. New measurement of the solar gravitational red shift. Phys Rev Lett, 1972, 28: 853–856CrossRefGoogle Scholar
  15. 15.
    Turner K C, Hill H A. New experimental limit on velocity-dependent interactions of clocks and distant matter. Phys Rev, 1964, 134: 252–256CrossRefzbMATHGoogle Scholar
  16. 16.
    Harkins M D. The relativistic Doppler shift in satellite tracking. Radio Sci, 1979, 14: 671–675CrossRefGoogle Scholar
  17. 17.
    Love A W. GPS, atomic clocks and relativity. IEEE Potentials, 2002, 13: 11–15CrossRefGoogle Scholar
  18. 18.
    Hanson J E. Principles of X-ray navigation. Dissertation for Ph.D. Degree. Palo Alto: Stanford University, 1996Google Scholar
  19. 19.
    Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation. Dissertation for Ph.D. Degree. College Park: University of Maryland, 2005Google Scholar
  20. 20.
    Sheikh S I, Pines D J, Ray P S, et al. Spacecraft navigation using X-ray pulsars. J Guid Control Dyn, 2006, 29: 49–63CrossRefGoogle Scholar
  21. 21.
    Oberg J. Titan calling. IEEE Spectr, 2004, 41: 28–33CrossRefGoogle Scholar
  22. 22.
    Misner C W, Thorne K S, Wheeler J A. Gravitation. San Francisco: W H Freeman and Company, 1973Google Scholar
  23. 23.
    Wald R M. General Relativity. Chicago: the University of Chicago Press, 1984CrossRefzbMATHGoogle Scholar
  24. 24.
    Møller C. The Theory of Relativity. 2nd ed. Oxford: Clarendon Press, 1972Google Scholar
  25. 25.
    Oppenheim A V, Willsky A S, Nawab S H. Signals and Systems. 2nd ed. New Jersey: Prentice-Hall, 1996Google Scholar
  26. 26.
    Xia X-G, Zhang Z. On a conjecture on time-warped band-limited signals. IEEE Trans Signal Process, 1992, 40: 252–254CrossRefGoogle Scholar
  27. 27.
    Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans Signal Process, 1994, 42: 3084–3091CrossRefGoogle Scholar
  28. 28.
    Tao R, Li B Z, Wang Y. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans Signal Process, 2007, 55: 3541–3547MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xia X-G. On bandlimited signals with fractional Fourier transform. IEEE Signal Process Lett, 1996, 3: 72–74CrossRefGoogle Scholar
  30. 30.
    Carroll B W, Ostlie D A. An Introduction to Modern Astrophysics. Cambridge: Cambridge University Press, 2017Google Scholar
  31. 31.
    Woolfson M. The origin and evolution of the solar system. Astron Geophys, 2000, 41: 12–19CrossRefGoogle Scholar
  32. 32.
    Shipman H L. Masses and radii of white-dwarf stars. III-results for 110 hydrogen-rich and 28 helium-rich stars. Astrophys J, 1979, 228: 240–256Google Scholar
  33. 33.
    Kepler S O, Kleinman S J, Nitta A, et al. White dwarf mass distribution in the SDSS. Mon Not R Astron Soc, 2007, 375: 1315–1324CrossRefGoogle Scholar
  34. 34.
    Ozel F, Psaltis D, Narayan R, et al. On the mass distribution and birth masses of neutron stars. Astrophys J, 2012, 757: 55CrossRefGoogle Scholar
  35. 35.
    Chamel N, Haensel P, Zdunik J L, et al. On the maximum mass of neutron stars. Int J Mod Phys E, 2013, 22: 1330018CrossRefGoogle Scholar
  36. 36.
    Antoniadis J, Freire P C C, Wex N, et al. A massive pulsar in a compact relativistic binary. Science, 2013, 340: 1233232CrossRefGoogle Scholar
  37. 37.
    Hasensel P, Potekhin A Y, Yakovlev D G. Neutron Star 1: Equation of State and Structure. Berlin: Springer, 2007CrossRefGoogle Scholar
  38. 38.
    Steiner A W, Lattimer J M, Brown E F. The neutron star mass-radius relation and the equation of state of dense matter. Astrophys J, 2013, 765: 5CrossRefGoogle Scholar
  39. 39.
    Zhao X F. The properties of the massive neutron star PSR J0348+0432. Int J Mod Phys D, 2015, 24: 1550058CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations