Advertisement

Nonlinear photoresponse of metallic graphene-like VSe2 ultrathin nanosheets for pulse laser generation

  • Tao Wang
  • Xinyao Shi
  • Jin Wang
  • Yijun Xu
  • Jie Chen
  • Zhuo Dong
  • Man Jiang
  • Pengfei Ma
  • Rongtao Su
  • Yanxing Ma
  • Jian WuEmail author
  • Kai ZhangEmail author
  • Pu Zhou
Research Paper
  • 14 Downloads

Abstract

Vanadium diselenide (VSe2), a typical metallic behaviour material among transition metal dichalcogenides (TMDCs) family, exhibits excellent photoelectric characteristics with a zero band gap, missing applicaiotn in pulse generation. In this work, a high-quality VSe2 saturable absorber (SA) was synthesized through a liquid-phase exfoliation method. The saturable absorption of obtained VSe2-SA was characterized systematically. The measured modulation depth was 9.9%, and the saturated intensity was 533.8 µJ/cm2. By incorporating this optical modulator into a ytterbium-doped fiber laser cavity, a stable passively Q-switched laser could be achieved. The pulse had the central wavelength of 1064.03 nm. As the pump power was increased, the repetition rate increased from 24.3 kHz to 35.6 kHz, and the pulse duration decreased from 7.21 µs to 5.27 µs. The output power had the maximum value of 28.55 mW. These results indicated that VSe2 is an effective candidate to generate pulse laser due to its excellent nonlinear optical properties and universal photoelectric response, which may advance the applications of VSe2-based nonlinear optics and photoelectric devices.

Keywords

transition metal dichalcogenides VSe2 saturable absorber pulse laser fiber laser 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Grant No. 61875223), Natural Science Foundation of Hunan Province (Grant No. 2018JJ3610), Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH031).

References

  1. 1.
    Penilla E H, Devia-Cruz L F, Wieg A T, et al. Ultrafast laser welding of ceramics. Science, 2019, 365: 803–808CrossRefGoogle Scholar
  2. 2.
    Liu Z J, Jin X X, Su R T, et al. Development status of high power fiber lasers and their coherent beam combination. Sci China Inf Sci, 2019, 62: 041301CrossRefGoogle Scholar
  3. 3.
    Malinauskas M, Žukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl, 2016, 5: 16133CrossRefGoogle Scholar
  4. 4.
    Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction. Rev Mod Phys, 2013, 85: 751–793CrossRefGoogle Scholar
  5. 5.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  6. 6.
    Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 2009, 19: 3077–3083CrossRefGoogle Scholar
  7. 7.
    Zhang H, Bao Q L, Tang D Y, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl Phys Lett, 2009, 95: 141103CrossRefGoogle Scholar
  8. 8.
    Sun Z P, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803–810CrossRefGoogle Scholar
  9. 9.
    Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl Phys Lett, 2010, 97: 203106CrossRefGoogle Scholar
  10. 10.
    Liu W J, Pang L H, Han H N, et al. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci Rep, 2016, 6: 19997CrossRefGoogle Scholar
  11. 11.
    Jin L, Ma X H, Zhang H, et al. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Opt Express, 2018, 26: 31244–31252CrossRefGoogle Scholar
  12. 12.
    Hisyam M B, Rusdi M F M, Latiff A A, et al. Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber. IEEE J Sel Top Quantum Electron, 2017, 23: 39–43CrossRefGoogle Scholar
  13. 13.
    Wang T, Jin X X, Yang J, et al. Ultra-stable pulse generation in ytterbium-doped fiber laser based on black phosphorus. Nanoscale Adv, 2019, 1: 195–202CrossRefGoogle Scholar
  14. 14.
    Yang Y Y, Yang S, Li C, et al. Passively Q-switched and mode-locked Tm-Ho co-doped fiber laser using a WS2 saturable absorber fabricated by chemical vapor deposition. Opt Laser Technol, 2019, 111: 571–574CrossRefGoogle Scholar
  15. 15.
    Li L, Jiang S Z, Wang Y G, et al. WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser. Opt Express, 2015, 23: 28698CrossRefGoogle Scholar
  16. 16.
    Luo A P, Liu M, Wang X D, et al. Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser. Photon Res, 2015, 3: 69CrossRefGoogle Scholar
  17. 17.
    Du J, Wang Q K, Jiang G B, et al. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci Rep, 2015, 4: 6346CrossRefGoogle Scholar
  18. 18.
    Liu W J, Liu M L, Han H N, et al. Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers. Photon Res, 2018, 6: 15–21CrossRefGoogle Scholar
  19. 19.
    Liu W J, Liu M L, OuYang Y L, et al. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology, 2018, 29: 394002CrossRefGoogle Scholar
  20. 20.
    Tian X L, Wei R F, Liu M, et al. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser. Nanoscale, 2018, 10: 9608–9615CrossRefGoogle Scholar
  21. 21.
    Yan B Z, Zhang B T, Nie H K, et al. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale, 2018, 10: 20171–20177CrossRefGoogle Scholar
  22. 22.
    Nie H K, Sun X L, Zhang B T, et al. Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 µm bulk laser. Opt Lett, 2018, 43: 3349–3352CrossRefGoogle Scholar
  23. 23.
    Niu K D, Sun R Y, Chen Q Y, et al. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon Res, 2018, 6: 72–76CrossRefGoogle Scholar
  24. 24.
    Bayard M, Sienko M J. Anomalous electrical and magnetic properties of vanadium diselenide. J Solid State Chem, 1976, 19: 325–329CrossRefGoogle Scholar
  25. 25.
    Li F Y, Tu K X, Chen Z F. Versatile electronic properties of VSe2 bulk, few-layers, monolayer, nanoribbons, and nanotubes: a computational exploration. J Phys Chem C, 2014, 118: 21264–21274CrossRefGoogle Scholar
  26. 26.
    Xu K, Chen P Z, Li X L, et al. Ultrathin nanosheets of vanadium diselenide: a metallic two-dimensional material with ferromagnetic charge-density-wave behavior. Angew Chem Int Ed, 2013, 52: 10477–10481CrossRefGoogle Scholar
  27. 27.
    Woolley A M, Wexler G. Band structures and Fermi surfaces for 1T-TaS2, 1T-TaSe2 and 1T-VSe2. J Phys C-Solid State Phys, 1977, 10: 2601–2616CrossRefGoogle Scholar
  28. 28.
    Ōnuki Y, Inada R, Tanuma S, et al. Electrochemical characteristics of TiS2, ZrSe2 and VSe2 in secondary lithium battery. Jpn J Appl Phys, 1981, 20: 1583–1588CrossRefGoogle Scholar
  29. 29.
    Wang Y P, Qian B B, Li H H, et al. VSe2/graphene nanocomposites as anode materials for lithium-ion batteries. Mater Lett, 2015, 141: 35–38CrossRefGoogle Scholar
  30. 30.
    Yang C, Feng J R, Lv F, et al. Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv Mater, 2018, 30: 1800036CrossRefGoogle Scholar
  31. 31.
    Jiang X T, Liu S X, Liang W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon Rev, 2018, 12: 1700229CrossRefGoogle Scholar
  32. 32.
    Cheng P K, Tang C Y, Wang X Y, et al. Passively Q-switched ytterbium-doped fiber laser based on broadband multilayer platinum ditelluride (PtTe2) saturable absorber. Sci Rep, 2019, 9: 10106CrossRefGoogle Scholar
  33. 33.
    Ge Y Q, Zhu Z F, Xu Y H, et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv Opt Mater, 2018, 6: 1701166CrossRefGoogle Scholar
  34. 34.
    Atkins R, Disch S, Jones Z, et al. Synthesis, structure and electrical properties of a new tin vanadium selenide. J Solid State Chem, 2013, 202: 128–133CrossRefGoogle Scholar
  35. 35.
    Wu H S, Song J X, Wu J, et al. Concave gold bipyramid saturable absorber based 1018 nm passively Q-switched fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–6Google Scholar
  36. 36.
    Wang T, Wang J, Wu J, et al. Near-infrared optical modulation for ultrashort pulse generation employing indium monosulfide (InS) two-dimensional semiconductor nanocrystals. Nanomaterials, 2019, 9: 865CrossRefGoogle Scholar
  37. 37.
    Liu J, Wu S, Yang Q H, et al. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser. Opt Lett, 2011, 36: 4008–4010CrossRefGoogle Scholar
  38. 38.
    Luo Z Q, Huang Y Z, Weng J, et al. 1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Opt Express, 2013, 21: 29516–29522CrossRefGoogle Scholar
  39. 39.
    Song J X, Wu H S, Wu J, et al. Passively Q-switched Tm-doped fiber laser based on concave gold bipyramids assembled quasi-2D saturable absorber. Laser Phys Lett, 2018, 15: 075104CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tao Wang
    • 1
  • Xinyao Shi
    • 2
  • Jin Wang
    • 1
  • Yijun Xu
    • 3
  • Jie Chen
    • 2
  • Zhuo Dong
    • 2
  • Man Jiang
    • 1
  • Pengfei Ma
    • 1
  • Rongtao Su
    • 1
  • Yanxing Ma
    • 1
  • Jian Wu
    • 1
    Email author
  • Kai Zhang
    • 2
    Email author
  • Pu Zhou
    • 1
  1. 1.College of Advanced Interdisciplinary StudiesNational University of Defense TechnologyChangshaChina
  2. 2.i-Lab, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina
  3. 3.Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina

Personalised recommendations