Advertisement

All-carbon hybrids for high-performance electronics, optoelectronics and energy storage

  • Shuchao QinEmail author
  • Yuanda Liu
  • Hongzhu Jiang
  • Yongbing Xu
  • Yi Shi
  • Rong Zhang
  • Fengqiu WangEmail author
Review
  • 16 Downloads

Abstract

The family of carbon allotropes such as carbon nanotubes (CNTs) and graphene, with their rich chemical and physical characteristics, has attracted intense attentions in the field of nanotechnology and enabled a number of disruptive devices and applications in electronics, optoelectronics and energy storage. Just as no individual 2D (two-dimensional) material can meet all technological requirements of various applications, combining carbon materials of different dimensionality into a hybrid form is a promising strategy to optimize properties and to build novel devices operating with new principles. In particular, the direct synthesis of 2D or 3D (three-dimensional) sp2-hybridized all-carbon hybrids based on merging CNTs and graphene affords a great promise for future electronic, optoelectronic and energy storages. Here, we review the progress of all-carbon hybrids-based devices, covering material preparation, fabrication techniques as well as applied devices. Recent progress about large-scale synthesis and assembly techniques is highlighted, and with many intrinsic advantages, the all-carbon strategy opens up a highly promising approach to obtain high-performance integrated circuits. Moreover, this review will discuss the remaining challenges in the field and provide perspectives on future applications.

Keywords

all-carbon hybrids electronics optoelectronics energy storage graphene carbon nanotube 

Notes

Acknowledgements

This work was supported in part by National Key R&D Program of China (Grant Nos. 2018YFB2200500, 2017YFA0206304), National Basic Research Program of China (Grant No. 2014CB921101), National Natural Science Foundation of China (Grant Nos. 61775093, 61427812), National Youth 1000-Talent Plan, ‘Jiangsu Shuangchuang Team’ Program, and Jiangsu NSF (Grant No. BK20170012).

References

  1. 1.
    Novoselov K S. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669Google Scholar
  2. 2.
    Jariwala D, Sangwan V K, Lauhon L J, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev, 2013, 42: 2824–2860CrossRefGoogle Scholar
  3. 3.
    Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162CrossRefGoogle Scholar
  4. 4.
    Avouris P, Chen Z H, Perebeinos V. Carbon-based electronics. Nat Nanotech, 2007, 2: 605–615CrossRefGoogle Scholar
  5. 5.
    Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photon, 2010, 4: 611–622CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438: 201–204CrossRefGoogle Scholar
  7. 7.
    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197–200CrossRefGoogle Scholar
  8. 8.
    Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706–710CrossRefGoogle Scholar
  9. 9.
    Liao L, Lin Y C, Bao M Q, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467: 305–308CrossRefGoogle Scholar
  10. 10.
    Yang H, Heo J, Park S, et al. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science, 2012, 336: 1140–1143CrossRefGoogle Scholar
  11. 11.
    Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale graphene integrated circuit. Science, 2011, 332: 1294–1297CrossRefGoogle Scholar
  12. 12.
    Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474: 64–67CrossRefGoogle Scholar
  13. 13.
    Ansell D, Radko I P, Han Z, et al. Hybrid graphene plasmonic waveguide modulators. Nat Commun, 2015, 6: 8846CrossRefGoogle Scholar
  14. 14.
    Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotech, 2014, 9: 273–278CrossRefGoogle Scholar
  15. 15.
    Baugher B W H, Churchill H O H, Yang Y, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nanotech, 2014, 9: 262–267CrossRefGoogle Scholar
  16. 16.
    Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nanotech, 2014, 9: 257–261CrossRefGoogle Scholar
  17. 17.
    Koppens F H L, Chang D E, Garcia de Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett, 2011, 11: 3370–3377CrossRefGoogle Scholar
  18. 18.
    Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 2014, 8: 1086–1101CrossRefGoogle Scholar
  19. 19.
    Sun Z P, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803–810CrossRefGoogle Scholar
  20. 20.
    Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotech, 2012, 7: 363–368CrossRefGoogle Scholar
  21. 21.
    Franklin A D, Chen Z H. Length scaling of carbon nanotube transistors. Nat Nanotech, 2010, 5: 858–862CrossRefGoogle Scholar
  22. 22.
    Cao Q, Han S J, Tulevski G S, et al. Arrays of single-walled carbon nanotubes with full surface coverage for highperformance electronics. Nat Nanotech, 2013, 8: 180–186CrossRefGoogle Scholar
  23. 23.
    Itkis M E, Borondics F, Yu A, et al. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312: 413–416CrossRefGoogle Scholar
  24. 24.
    Geier M L, Prabhumirashi P L, McMorrow J J, et al. Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. Nano Lett, 2013, 13: 4810–4814CrossRefGoogle Scholar
  25. 25.
    Park H, Afzali A, Han S J, et al. High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotech, 2012, 7: 787–791CrossRefGoogle Scholar
  26. 26.
    Liu H P, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, 2011, 2: 309CrossRefGoogle Scholar
  27. 27.
    Zhu H W, Xu C L, Wu D H. Direct synthesis of long single-walled carbon nanotube strands. Science, 2002, 296: 884–886CrossRefGoogle Scholar
  28. 28.
    Charlier J C, Blase X, Roche S. Electronic and transport properties of nanotubes. Rev Mod Phys, 2007, 79: 677–732CrossRefGoogle Scholar
  29. 29.
    Mintmire J W, White C T. Universal density of states for carbon nanotubes. Phys Rev Lett, 1998, 81: 2506–2509CrossRefGoogle Scholar
  30. 30.
    Wong H S P, Akinwande D. Carbon Nanotube and Graphene Device Physics. Cambridge: Cambridge University Press, 2011Google Scholar
  31. 31.
    Barone P W, Baik S, Heller D A, et al. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater, 2004, 4: 86–92CrossRefGoogle Scholar
  32. 32.
    Bahk Y M, Ramakrishnan G, Choi J, et al. Plasmon enhanced terahertz emission from single layer graphene. ACS Nano, 2014, 8: 9089–9096CrossRefGoogle Scholar
  33. 33.
    Behnam A, Sangwan V K, Zhong X Y, et al. High-field transport and thermal reliability of sorted carbon nanotube network devices. ACS Nano, 2013, 7: 482–490CrossRefGoogle Scholar
  34. 34.
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58CrossRefGoogle Scholar
  35. 35.
    Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358: 220–222CrossRefGoogle Scholar
  36. 36.
    Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–605CrossRefGoogle Scholar
  37. 37.
    Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483–487CrossRefGoogle Scholar
  38. 38.
    Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. J Phys Chem, 1995, 99: 10694–10697CrossRefGoogle Scholar
  39. 39.
    Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett, 1995, 243: 49–54CrossRefGoogle Scholar
  40. 40.
    Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274: 1701–1703CrossRefGoogle Scholar
  41. 41.
    Hata K, Futaba D N, Mizuno K. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306: 1362–1364CrossRefGoogle Scholar
  42. 42.
    Zhang Y G, Chang A, Cao J, et al. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett, 2001, 79: 3155–3157CrossRefGoogle Scholar
  43. 43.
    Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotech, 2006, 1: 60–65CrossRefGoogle Scholar
  44. 44.
    Arnold M S, Stupp S I, Hersam M C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett, 2005, 5: 713–718CrossRefGoogle Scholar
  45. 45.
    Green A A, Hersam M C. Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type. ACS Nano, 2011, 5: 1459–1467CrossRefGoogle Scholar
  46. 46.
    Green A A, Hersam M C. Processing and properties of highly enriched double-wall carbon nanotubes. Nat Nanotech, 2009, 4: 64–70CrossRefGoogle Scholar
  47. 47.
    Green A A, Hersam M C. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv Mater, 2011, 23: 2185–2190CrossRefGoogle Scholar
  48. 48.
    Antaris A L, Seo J W T, Green A A, et al. Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS Nano, 2010, 4: 4725–4732CrossRefGoogle Scholar
  49. 49.
    Yang F, Wang X, Zhang D Q, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510: 522–524CrossRefGoogle Scholar
  50. 50.
    Yang F, Wang X, Si J, et al. Water-assisted preparation of high-purity semiconducting (14, 4) carbon nanotubes. ACS Nano, 2017, 11: 186–193CrossRefGoogle Scholar
  51. 51.
    Wang J T, Jin X, Liu Z B, et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat Catal, 2018, 1: 326–331CrossRefGoogle Scholar
  52. 52.
    Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotech, 2008, 3: 563–568CrossRefGoogle Scholar
  53. 53.
    Liu N, Luo F, Wu H X, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater, 2008, 18: 1518–1525CrossRefGoogle Scholar
  54. 54.
    Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458: 872–876CrossRefGoogle Scholar
  55. 55.
    Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458: 877–880CrossRefGoogle Scholar
  56. 56.
    Terrones M, Botello-Méndez A R, Campos-Delgado J, et al. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5: 351–372CrossRefGoogle Scholar
  57. 57.
    Yan Q M, Huang B, Yu J, et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett, 2007, 7: 1469–1473CrossRefGoogle Scholar
  58. 58.
    Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 2009, 8: 203–207CrossRefGoogle Scholar
  59. 59.
    de Heer W A, Berger C, Ruan M, et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc Natl Acad Sci USA, 2011, 108: 16900–16905CrossRefGoogle Scholar
  60. 60.
    Somani P R, Somani S P, Umeno M. Planer nano-graphenes from camphor by CVD. Chem Phys Lett, 2006, 430: 56–59CrossRefGoogle Scholar
  61. 61.
    Li X S, Cai W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324: 1312–1314CrossRefGoogle Scholar
  62. 62.
    Lee S, Lee K, Zhong Z H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett, 2010, 10: 4702–4707CrossRefGoogle Scholar
  63. 63.
    Gao L B, Ren W C, Xu H L, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun, 2012, 3: 699CrossRefGoogle Scholar
  64. 64.
    Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574–578CrossRefGoogle Scholar
  65. 65.
    Pei S, Cheng H M. The reduction of graphene oxide. Carbon, 2012, 50: 3210–3228CrossRefGoogle Scholar
  66. 66.
    Wang H, Xu X Z, Li J Y, et al. Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow. Adv Mater, 2016, 28: 8968–8974CrossRefGoogle Scholar
  67. 67.
    Liu C, Xu X Z, Qiu L, et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat Chem, 2019, 11: 730–736CrossRefGoogle Scholar
  68. 68.
    Xu X Z, Zhang Z H, Dong J C, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci Bull, 2017, 62: 1074–1080CrossRefGoogle Scholar
  69. 69.
    Yan Z, Peng Z W, Casillas G, et al. Rebar graphene. ACS Nano, 2014, 8: 5061–5068CrossRefGoogle Scholar
  70. 70.
    Novaes F D, Rurali R, Ordejón P. Electronic transport between graphene layers covalently connected by carbon nanotubes. ACS Nano, 2010, 4: 7596–7602CrossRefGoogle Scholar
  71. 71.
    Varshney V, Patnaik S S, Roy A K, et al. Modeling of thermal transport in pillared-graphene architectures. ACS Nano, 2010, 4: 1153–1161CrossRefGoogle Scholar
  72. 72.
    Lin X Y, Liu P, Wei Y, et al. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat Commun, 2013, 4: 2920CrossRefGoogle Scholar
  73. 73.
    Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Lett, 2012, 12: 3602–3608CrossRefGoogle Scholar
  74. 74.
    Hong T K, Lee D W, Choi H J, et al. Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets. ACS Nano, 2010, 4: 3861–3868CrossRefGoogle Scholar
  75. 75.
    Tristán-López F, Morelos-Gómez A, Vega-Díaz S M, et al. Large area films of alternating graphene-carbon nanotube layers processed in water. ACS Nano, 2013, 7: 10788–10798CrossRefGoogle Scholar
  76. 76.
    Fan Z J, Yan J, Zhi L J, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater, 2010, 22: 3723–3728CrossRefGoogle Scholar
  77. 77.
    Zhu Y, Li L, Zhang C G, et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun, 2012, 3: 1225CrossRefGoogle Scholar
  78. 78.
    Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotech, 2014, 9: 555–562CrossRefGoogle Scholar
  79. 79.
    Ando T, Nakanishi T. Impurity scattering in carbon nanotubes absence of back scattering. J Phys Soc Jpn, 1998, 67: 1704–1713CrossRefGoogle Scholar
  80. 80.
    Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146: 351–355CrossRefGoogle Scholar
  81. 81.
    Gusynin V P, Sharapov S G. Unconventional integer quantum hall effect in graphene. Phys Rev Lett, 2005, 95: 146801CrossRefGoogle Scholar
  82. 82.
    Tworzydlo J, Trauzettel B, Titov M, et al. Sub-poissonian shot noise in graphene. Phys Rev Lett, 2006, 96: 246802CrossRefGoogle Scholar
  83. 83.
    Ziegler K. Robust transport properties in graphene. Phys Rev Lett, 2006, 97: 266802CrossRefGoogle Scholar
  84. 84.
    Han M Y, Özyilmaz B, Zhang Y B, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 2007, 98: 206805CrossRefGoogle Scholar
  85. 85.
    Berger C. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312: 1191–1196CrossRefGoogle Scholar
  86. 86.
    Schwierz F. Graphene transistors. Nat Nanotech, 2010, 5: 487–496CrossRefGoogle Scholar
  87. 87.
    Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183–191CrossRefGoogle Scholar
  88. 88.
    Berger C, Song Z M, Li T B, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108: 19912–19916CrossRefGoogle Scholar
  89. 89.
    Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327: 662–662CrossRefGoogle Scholar
  90. 90.
    Wu Y Q, Lin Y M, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472: 74–78CrossRefGoogle Scholar
  91. 91.
    Sire C, Ardiaca F, Lepilliet S, et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett, 2012, 12: 1184–1188CrossRefGoogle Scholar
  92. 92.
    Kim B J, Lee S K, Kang M S, et al. Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano, 2012, 6: 8646–8651CrossRefGoogle Scholar
  93. 93.
    Li S L, Miyazaki H, Kumatani A, et al. Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett, 2010, 10: 2357–2362CrossRefGoogle Scholar
  94. 94.
    Dürkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 2004, 4: 35–39CrossRefGoogle Scholar
  95. 95.
    Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors. Science, 2001, 294: 1317–1320CrossRefGoogle Scholar
  96. 96.
    Sun D M, Timmermans M Y, Tian Y, et al. Flexible high-performance carbon nanotube integrated circuits. Nat Nanotech, 2011, 6: 156–161CrossRefGoogle Scholar
  97. 97.
    Sun D M, Timmermans M Y, Kaskela A, et al. Mouldable all-carbon integrated circuits. Nat Commun, 2013, 4: 2302CrossRefGoogle Scholar
  98. 98.
    Derycke V, Martel R, Appenzeller J, et al. Carbon nanotube inter- and intramolecular logic gates. Nano Lett, 2001, 1: 453–456CrossRefGoogle Scholar
  99. 99.
    Franklin A D, Luisier M, Han S J, et al. Sub-10 nm carbon nanotube transistor. Nano Lett, 2012, 12: 758–762CrossRefGoogle Scholar
  100. 100.
    Dong X C, Fu D L, Fang W J, et al. Doping single-layer graphene with aromatic molecules. Small, 2009, 5: 1422–1426CrossRefGoogle Scholar
  101. 101.
    Liu Y, Jin Z, Wang J Y, et al. Nitrogen-doped single-walled carbon nanotubes grown on substrates: evidence for framework doping and their enhanced properties. Adv Funct Mater, 2011, 21: 986–992CrossRefGoogle Scholar
  102. 102.
    Lv R T, Cui T X, Jun M S, et al. Open-ended, n-doped carbon nanotube-graphene hybrid nanostructures as highperformance catalyst support. Adv Funct Mater, 2011, 21: 999–1006CrossRefGoogle Scholar
  103. 103.
    Lin Y M, Appenzeller J, Knoch J, et al. High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans Nanotechnol, 2005, 4: 481–489CrossRefGoogle Scholar
  104. 104.
    Yu W J, Kang B R, Lee I H, et al. Majority carrier type conversion with floating gates in carbon nanotube transistors. Adv Mater, 2009, 21: 4821–4824CrossRefGoogle Scholar
  105. 105.
    Nosho Y, Ohno Y, Kishimoto S, et al. Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors. Nanotechnology, 2006, 17: 3412–3415CrossRefGoogle Scholar
  106. 106.
    Yamamoto K, Kamimura T, Matsumoto K. Nitrogen doping of single-walled carbon nanotube by using mass-separated low-energy ion beams. Jpn J Appl Phys, 2005, 44: 1611–1614CrossRefGoogle Scholar
  107. 107.
    Moriyama N, Ohno Y, Kitamura T, et al. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges. Nanotechnology, 2010, 21: 165201CrossRefGoogle Scholar
  108. 108.
    Liu W, Song M S, Kong B, et al. Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater, 2017, 29: 1603436CrossRefGoogle Scholar
  109. 109.
    Khang D Y. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208–212CrossRefGoogle Scholar
  110. 110.
    Huang J H, Fang J H, Liu C C, et al. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics. ACS Nano, 2011, 5: 6262–6271CrossRefGoogle Scholar
  111. 111.
    Cao Q, Hur S H, Zhu Z T, et al. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 2006, 18: 304–309CrossRefGoogle Scholar
  112. 112.
    Aikawa S, Einarsson E, Thurakitseree T, et al. Deformable transparent all-carbon-nanotube transistors. Appl Phys Lett, 2012, 100: 063502CrossRefGoogle Scholar
  113. 113.
    Tung V C, Chen L M, Allen M J, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett, 2009, 9: 1949–1955CrossRefGoogle Scholar
  114. 114.
    Lu R T, Christianson C, Weintrub B, et al. High photoresponse in hybrid graphene-carbon nanotube infrared detectors. ACS Appl Mater Interfaces, 2013, 5: 11703–11707CrossRefGoogle Scholar
  115. 115.
    Kim S H, Song W, Jung M W, et al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv Mater, 2014, 26: 4247–4252CrossRefGoogle Scholar
  116. 116.
    Peng L W, Feng Y Y, Lv P, et al. Transparent, conductive, and flexible multiwalled carbon nanotube/graphene hybrid electrodes with two three-dimensional microstructures. J Phys Chem C, 2012, 116: 4970–4978CrossRefGoogle Scholar
  117. 117.
    Liu Y J, Liu Y D, Qin S C, et al. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res, 2017, 10: 1880–1887CrossRefGoogle Scholar
  118. 118.
    Liu Y D, Wang F Q, Wang X M, et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat Commun, 2015, 6: 8589CrossRefGoogle Scholar
  119. 119.
    Jang S, Jang H, Lee Y, et al. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology, 2010, 21: 425201CrossRefGoogle Scholar
  120. 120.
    Liu Y D, Wang F Q, Liu Y J, et al. Charge transfer at carbon nanotube-graphene van der Waals heterojunctions. Nanoscale, 2016, 8: 12883–12886CrossRefGoogle Scholar
  121. 121.
    Kholmanov I N, Magnuson C W, Piner R, et al. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater, 2015, 27: 3053–3059CrossRefGoogle Scholar
  122. 122.
    Yu W J, Lee S Y, Chae S H, et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett, 2011, 11: 1344–1350CrossRefGoogle Scholar
  123. 123.
    Yu W J, Chae S H, Lee S Y, et al. Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv Mater, 2011, 23: 1889–1893CrossRefGoogle Scholar
  124. 124.
    Jung S, Kim J H, Kim J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv Mater, 2014, 26: 4825–4830CrossRefGoogle Scholar
  125. 125.
    Wang X W, Gu Y, Xiong Z P, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 2014, 26: 1336–1342CrossRefGoogle Scholar
  126. 126.
    Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8: 4689–4697CrossRefGoogle Scholar
  127. 127.
    Yeom C, Chen K, Kiriya D, et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Adv Mater, 2015, 27: 1561–1566CrossRefGoogle Scholar
  128. 128.
    Zhu B W, Niu Z Q, Wang H, et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small, 2014, 10: 3625–3631CrossRefGoogle Scholar
  129. 129.
    Bae G Y, Pak S W, Kim D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater, 2016, 28: 5300–5306CrossRefGoogle Scholar
  130. 130.
    Sheng L Z, Liang Y, Jiang L L, et al. Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv Funct Mater, 2015, 25: 6545–6551CrossRefGoogle Scholar
  131. 131.
    Yao H B, Ge J, Wang C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv Mater, 2013, 25: 6692–6698CrossRefGoogle Scholar
  132. 132.
    Jian M Q, Xia K L, Wang Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv Funct Mater, 2017, 27: 1606066CrossRefGoogle Scholar
  133. 133.
    Li J H, Li W X, Huang W P, et al. Fabrication of highly reinforced and compressible graphene/carbon nanotube hybrid foams via a facile self-assembly process for application as strain sensors and beyond. J Mater Chem C, 2017, 5: 2723–2730CrossRefGoogle Scholar
  134. 134.
    Kim K H, Oh Y, Islam M F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat Nanotech, 2012, 7: 562–566CrossRefGoogle Scholar
  135. 135.
    Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater, 2013, 25: 2554–2560CrossRefGoogle Scholar
  136. 136.
    Li X L, Sha J W, Lee S K, et al. Rivet graphene. ACS Nano, 2016, 10: 7307–7313CrossRefGoogle Scholar
  137. 137.
    Nguyen D D, Tai N H, Chen S Y, et al. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale, 2012, 4: 632–638CrossRefGoogle Scholar
  138. 138.
    Lee D H, Kim J E, Han T H, et al. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv Mater, 2010, 22: 1247–1252CrossRefGoogle Scholar
  139. 139.
    Lyth S M, Silva S R P. Field emission from multiwall carbon nanotubes on paper substrates. Appl Phys Lett, 2007, 90: 173124CrossRefGoogle Scholar
  140. 140.
    Mani V, Devadas B, Chen S M. Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron, 2013, 41: 309–315CrossRefGoogle Scholar
  141. 141.
    Liu F, Piao Y X, Choi K S, et al. Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon, 2012, 50: 123–133CrossRefGoogle Scholar
  142. 142.
    Chen H, Qian W Z, Xie Q, et al. Graphene-carbon nanotube hybrids as robust, rapid, reversible adsorbents for organics. Carbon, 2017, 116: 409–414CrossRefGoogle Scholar
  143. 143.
    Gabor N M, Zhong Z H, Bosnick K, et al. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 2009, 325: 1367–1371CrossRefGoogle Scholar
  144. 144.
    Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in graphene. Nat Commun, 2011, 2: 458CrossRefGoogle Scholar
  145. 145.
    Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun, 2011, 2: 579CrossRefGoogle Scholar
  146. 146.
    Lu R T, Shi J J, Baca F J, et al. High performance multiwall carbon nanotube bolometers. J Appl Phys, 2010, 108: 084305CrossRefGoogle Scholar
  147. 147.
    He X W, Liéonard F, Kono J. Uncooled carbon nanotube photodetectors. Adv Opt Mater, 2015, 3: 989–1011CrossRefGoogle Scholar
  148. 148.
    Pei T, Xu H T, Zhang Z Y, et al. Electronic transport in single-walled carbon nanotube/graphene junction. Appl Phys Lett, 2011, 99: 113102CrossRefGoogle Scholar
  149. 149.
    Pyo S, Kim W, Jung H I, et al. Heterogeneous integration of carbon-nanotube-graphene for high-performance, flexible, and transparent photodetectors. Small, 2017, 13: 1700918CrossRefGoogle Scholar
  150. 150.
    Velten J, Mozer A J, Li D, et al. Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology, 2012, 23: 085201CrossRefGoogle Scholar
  151. 151.
    Choi H, Kim H, Hwang S, et al. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol Energy Mater Sol Cells, 2011, 95: 323–325CrossRefGoogle Scholar
  152. 152.
    Gan X, Lv R T, Bai J F, et al. Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors. 2D Mater, 2015, 2: 034003CrossRefGoogle Scholar
  153. 153.
    Chung K, Lee C H, Yi G C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science, 2010, 330: 655–657CrossRefGoogle Scholar
  154. 154.
    Yoo H, Chung K, Choi Y S, et al. Microstructures of GaN thin films grown on graphene layers. Adv Mater, 2012, 24: 515–518CrossRefGoogle Scholar
  155. 155.
    Han N, Cuong T V, Han M, et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat Commun, 2013, 4: 1452CrossRefGoogle Scholar
  156. 156.
    Lee C H, Kim Y J, Hong Y J, et al. Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv Mater, 2011, 23: 4614–4619CrossRefGoogle Scholar
  157. 157.
    Seo T H, Park A H, Park S, et al. Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes. Sci Rep, 2015, 5: 7747CrossRefGoogle Scholar
  158. 158.
    Qin S C, Wang F Q, Liu Y J, et al. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater, 2017, 4: 035022CrossRefGoogle Scholar
  159. 159.
    Lee M, Lee W, Choi S, et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater, 2017, 29: 1700951CrossRefGoogle Scholar
  160. 160.
    Dai S L, Wu X H, Liu D P, et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces, 2018, 10: 21472–21480CrossRefGoogle Scholar
  161. 161.
    Qin S C, Chen X Q, Du Q Q, et al. Sensitive and robust ultraviolet photodetector array based on self-assembled graphene/C60 hybrid films. ACS Appl Mater Interfaces, 2018, 10: 38326–38333CrossRefGoogle Scholar
  162. 162.
    Qin S C, Jiang H Z, Du Q Q, et al. Planar graphene-C60-graphene heterostructures for sensitive UV-visible photodetection. Carbon, 2019, 146: 486–490CrossRefGoogle Scholar
  163. 163.
    Jnawali G, Rao Y, Beck J H, et al. Observation of ground- and excited-state charge transfer at the C60/graphene interface. ACS Nano, 2015, 9: 7175–7185CrossRefGoogle Scholar
  164. 164.
    Ojeda-Aristizabal C, Santos E J G, Onishi S, et al. Molecular arrangement and charge transfer in C60/graphene heterostructures. ACS Nano, 2017, 11: 4686–4693CrossRefGoogle Scholar
  165. 165.
    Cheng Q, Tang J, Ma J, et al. Graphene and carbon nanotube composite electrodes for supercapacitors with ultrahigh energy density. Phys Chem Chem Phys, 2011, 13: 17615CrossRefGoogle Scholar
  166. 166.
    Izadi-Najafabadi A, Yasuda S, Kobashi K, et al. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater, 2010, 22: E235–E241CrossRefGoogle Scholar
  167. 167.
    Zhang D S, Yan T T, Shi L Y, et al. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J Mater Chem, 2012, 22: 14696CrossRefGoogle Scholar
  168. 168.
    Yu D S, Dai L M. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett, 2010, 1: 467–470CrossRefGoogle Scholar
  169. 169.
    Cheng Q, Tang J, Ma J, et al. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon, 2011, 49: 2917–2925CrossRefGoogle Scholar
  170. 170.
    Yang S Y, Chang K H, Tien H W, et al. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem, 2011, 21: 2374–2380CrossRefGoogle Scholar
  171. 171.
    Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett, 2008, 8: 3166–3170CrossRefGoogle Scholar
  172. 172.
    Mao Y L, Zhong J X. The computational design of junctions by carbon nanotube insertion into a graphene matrix. New J Phys, 2009, 11: 093002CrossRefGoogle Scholar
  173. 173.
    Du F, Yu D S, Dai L M, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for highperformance capacitance. Chem Mater, 2011, 23: 4810–4816CrossRefGoogle Scholar
  174. 174.
    Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano, 2012, 6: 10759–10769CrossRefGoogle Scholar
  175. 175.
    Li S S, Luo Y H, Lv W, et al. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv Energy Mater, 2011, 1: 486–490CrossRefGoogle Scholar
  176. 176.
    Bae S H, Karthikeyan K, Lee Y S, et al. Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery. Carbon, 2013, 64: 527–536CrossRefGoogle Scholar
  177. 177.
    Lv R, Cruz-Silva E, Terrones M. Building complex hybrid carbon architectures by covalent interconnections: graphenenanotube hybrids and more. ACS Nano, 2014, 8: 4061–4069CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic Science and EngineeringNanjing UniversityNanjingChina
  2. 2.Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information EngineeringLiaocheng UniversityLiaochengChina
  3. 3.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations