The emerging ferroic orderings in two dimensions

  • Yupeng Zhang
  • Hanwen Wang
  • Feng Li
  • Xingdan Sun
  • Baojuan Dong
  • Xiaoxi Li
  • Zheng Vitto HanEmail author
  • Teng YangEmail author
  • Han ZhangEmail author


Because of the discovery of carbon atomic flat land, emerging physical phenomena are reported using the platform of two-dimensional materials and their hetero-structures. Especially, quantum orderings, such as superconductivity, ferromagnetism, and ferroelectricity in the atomically thin limit are cutting edge topics, which are of broad interest in the scope of condensed matter physics. In this study, we will recall the recent developments on two-dimensional ferroic orderings from both experimental and theoretical points of view. The booming of ferroic orderings in van der Waals two-dimensional materials are believed to hold promises for the next generation spin- or dipole-related nanoelectronics, because they can be seamlessly interfaced into heterostructures, and in principle are in line with large scale low-cost growth, flexible wearable devices, as well as semiconducting electronics thanks to the existence of band gaps in many of them.


two-dimensional materials quantum orderings magnetism ferroelectricity nanoelectronics 



This work was supported by National Key R&D Program of China (Grant No. 2017YFA0206302), and National Natural Science Foundation of China (Grant Nos. 11504385, 51627801, 61435010, 51702219, 61975134). Han ZHANG and Yupeng ZHANG acknowledge the support from Science and Technology Innovation Commission of Shenzhen (Grant Nos. JCYJ20170818093453105, JCYJ20180305125345378). Teng YANG acknowledges supports from Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204). Zheng Vitto HAN acknowledges the support from Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201816).


  1. 1.
    Jiang X T, Liu S X, Liang W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev, 2018, 12: 1700229CrossRefGoogle Scholar
  2. 2.
    Lu L, Liang Z M, Wu L M, et al. Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev, 2018, 12: 1700221CrossRefGoogle Scholar
  3. 3.
    Mu H R, Wang Z T, Yuan J, et al. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics, 2015, 2: 832–841CrossRefGoogle Scholar
  4. 4.
    Lu L, Tang X, Cao R, et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability. Adv Opt Mater, 2017, 5: 1700301CrossRefGoogle Scholar
  5. 5.
    Jiang Y Q, Miao L L, Jiang G B, et al. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci Rep, 2015, 5: 16372CrossRefGoogle Scholar
  6. 6.
    Xing C Y, Jing G H, Liang X, et al. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale, 2017, 9: 8096–8101CrossRefGoogle Scholar
  7. 7.
    Zibouche N, Philipsen P, Kuc A, et al. Transition-metal dichalcogenide bilayers: Switching materials for spintronic and valleytronic applications. Phys Rev B, 2014, 90: 125440CrossRefGoogle Scholar
  8. 8.
    Xiao D, Liu G B, Feng W, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 2012, 108: 196802CrossRefGoogle Scholar
  9. 9.
    Schaibley J R, Yu H, Clark G, et al. Valleytronics in 2D materials. Nat Rev Mater, 2016, 1: 16055CrossRefGoogle Scholar
  10. 10.
    Sun Z B, Zhao Y T, Li Z B, et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small, 2017, 13: 1602896CrossRefGoogle Scholar
  11. 11.
    Xie H H, Li Z B, Sun Z B, et al. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small, 2016, 12: 4136–4145CrossRefGoogle Scholar
  12. 12.
    Qi J, Lan Y W, Stieg A Z, et al. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat Commun, 2015, 6: 7430CrossRefGoogle Scholar
  13. 13.
    Li F, Qi J J, Xu M X, et al. Layer dependence and light tuning surface potential of 2D MoS2 on various substrates. Small, 2017, 13: 1603103CrossRefGoogle Scholar
  14. 14.
    Ren X H, Zhou J, Qi X, et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv Energy Mater, 2017, 7: 1700396CrossRefGoogle Scholar
  15. 15.
    Wang T, Guo Y L, Wan P B, et al. Flexible transparent electronic gas sensors. Small, 2016, 12: 3748–3756CrossRefGoogle Scholar
  16. 16.
    Xu C, Wang L B, Liu Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater, 2015, 14: 1135–1141CrossRefGoogle Scholar
  17. 17.
    Liu Y, Weiss N O, Duan X D, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042CrossRefGoogle Scholar
  18. 18.
    Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439CrossRefGoogle Scholar
  19. 19.
    Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2: 17033CrossRefGoogle Scholar
  20. 20.
    Hu J M, Chen L Q, Nan C W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv Mater, 2016, 28: 15–39CrossRefGoogle Scholar
  21. 21.
    Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363: eaav4450CrossRefGoogle Scholar
  22. 22.
    Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14: 408–419CrossRefGoogle Scholar
  23. 23.
    Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett, 1966, 17: 1133–1136CrossRefGoogle Scholar
  24. 24.
    Stanley H E, Kaplan T A. Possibility of a phase transition for the two-dimensional heisenberg model. Phys Rev Lett, 1966, 17: 913–915CrossRefGoogle Scholar
  25. 25.
    Kosterlitz J M, Thouless D J. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C-Solid State Phys, 1973, 6: 1181–1203CrossRefGoogle Scholar
  26. 26.
    Berezinskii V L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. classical systems. J Exp Theor Phys, 1971, 32: 493MathSciNetGoogle Scholar
  27. 27.
    Fröhlich J, Lieb E H. Existence of phase transitions for anisotropic heisenberg models. Phys Rev Lett, 1977, 38: 440–442CrossRefGoogle Scholar
  28. 28.
    Mohn P. Magnetism in the Solid State: An Introduction. Berlin: Springer, 2005Google Scholar
  29. 29.
    Blundell S. Magnetism in Condensed Matter. Oxford: Oxford University Press, 2001Google Scholar
  30. 30.
    Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273CrossRefGoogle Scholar
  31. 31.
    Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269CrossRefGoogle Scholar
  32. 32.
    Wang Z, Zhang T Y, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotech, 2018, 13: 554–559CrossRefGoogle Scholar
  33. 33.
    Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556: 80–84CrossRefGoogle Scholar
  34. 34.
    Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater, 2018, 17: 778–782CrossRefGoogle Scholar
  35. 35.
    Samarth N. Condensed-matter physics: magnetism in flatland. Nature, 2017, 546: 216–218CrossRefGoogle Scholar
  36. 36.
    Tsubokawa I. On the magnetic properties of a CrBr3 single crystal. J Phys Soc Jpn, 1960, 15: 1664–1668CrossRefGoogle Scholar
  37. 37.
    Hansen W N. Some magnetic properties of the chromium (III) halides at 42 K. J Appl Phys, 1959, 30: S304CrossRefGoogle Scholar
  38. 38.
    Starr C, Bitter F, Kaufmann A R. The magnetic properties of the iron group anhydrous chlorides at low temperatures. I. experimental. Phys Rev, 1940, 58: 977–983zbMATHCrossRefGoogle Scholar
  39. 39.
    Hansen W N, Griffel M. Heat capacities of CrF3 and CrCl3 from 15 to 300°K. J Chem Phys, 1958, 28: 902–907CrossRefGoogle Scholar
  40. 40.
    Cable J W, Wilkinson M K, Wollan E O. Neutron diffraction investigation of antiferromagnetism in CrCl3. J Phys Chem Solids, 1961, 19: 29–34CrossRefGoogle Scholar
  41. 41.
    McGuire M A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals, 2017, 7: 121CrossRefGoogle Scholar
  42. 42.
    Carteaux V, Moussa F, Spiesser M. 2D ising-like ferromagnetic behaviour for the lamellar Cr2Si2Te6 compound: a neutron scattering investigation. Europhys Lett, 1995, 29: 251–256CrossRefGoogle Scholar
  43. 43.
    Ouvrard G, Brec R, Rouxel J. Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd). Mater Res Bull, 1985, 20: 1181–1189CrossRefGoogle Scholar
  44. 44.
    Taylor B, Steger J, Wold A, et al. Preparation and properties of iron phosphorus triselenide, FePSe3. Inorg Chem, 1974, 13: 2719–2721CrossRefGoogle Scholar
  45. 45.
    Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4: 035002CrossRefGoogle Scholar
  46. 46.
    Ji H, Stokes R A, Alegria L D, et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J Appl Phys, 2013, 114: 114907CrossRefGoogle Scholar
  47. 47.
    Brec R. Review on structural and chemical properties of transition metal phosphorus trisulfides MPS3. In: Intercalation in Layered Materials. Boston: Springer, 1986. 148: 93–124CrossRefGoogle Scholar
  48. 48.
    Wildes A R, Simonet V, Ressouche E, et al. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J Phys-Condens Matter, 2017, 29: 455801CrossRefGoogle Scholar
  49. 49.
    Joy P A, Vasudevan S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys Rev B, 1992, 46: 5425–5433CrossRefGoogle Scholar
  50. 50.
    Kurosawa K, Saito S, Yamaguchi Y. Neutron diffraction study on MnPS3 and FePS3. J Phys Soc Jpn, 1983, 52: 3919–3926CrossRefGoogle Scholar
  51. 51.
    Deng Y J, Yu Y J, Song Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563: 94–99CrossRefGoogle Scholar
  52. 52.
    Nozaki H, Umehara M, Ishizawa Y, et al. Magnetic properties of V5S8 single crystals. J Phys Chem Solids, 1978, 39: 851–858CrossRefGoogle Scholar
  53. 53.
    Niu J J, Yan B M, Ji Q Q, et al. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys Rev B, 2017, 96: 075402CrossRefGoogle Scholar
  54. 54.
    Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotech, 2018, 13: 289–293CrossRefGoogle Scholar
  55. 55.
    Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc Natl Acad Sci USA, 2018, 115: 8511–8516CrossRefGoogle Scholar
  56. 56.
    Arai M, Moriya R, Yabuki N, et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl Phys Lett, 2015, 107: 103107CrossRefGoogle Scholar
  57. 57.
    Wang X, Tang J, Xia X, et al. Current driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. 2019. ArXiv: 190205794v1Google Scholar
  58. 58.
    Wang Z, Sapkota D, Taniguchi T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett, 2018, 18: 4303–4308CrossRefGoogle Scholar
  59. 59.
    Handy L L, Gregory N W. Structural properties of chromium (III) iodide and some chromium (III) mixed halides. J Am Chem Soc, 1952, 74: 891–893CrossRefGoogle Scholar
  60. 60.
    Morosin B, Narath A. X-ray diffraction and nuclear quadrupole resonance studies of chromium trichloride. J Chem Phys, 1964, 40: 1958–1967CrossRefGoogle Scholar
  61. 61.
    Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotech, 2018, 13: 544–548CrossRefGoogle Scholar
  62. 62.
    Ghazaryan D, Greenaway M T, Wang Z, et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat Electron, 2018, 1: 344–349CrossRefGoogle Scholar
  63. 63.
    Zhang W B, Qu Q, Zhu P, et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C, 2015, 3: 12457–12468CrossRefGoogle Scholar
  64. 64.
    Dillon Jr J F, Kamimura H, Remeika J P. Magneto-optical properties of ferromagnetic chromium trihalides. J Phys Chem Solids, 1966, 27: 1531–1549CrossRefGoogle Scholar
  65. 65.
    Wang H, Eyert V, Schwingenschlögl U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J Phys-Condens Matter, 2011, 23: 116003CrossRefGoogle Scholar
  66. 66.
    Wang H B, Fan F R, Zhu S S, et al. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL, 2016, 114: 47001CrossRefGoogle Scholar
  67. 67.
    Sivadas N, Okamoto S, Xu X, et al. Stacking-dependent magnetism in bilayer CrI3. Nano Lett, 2018, 18: 7658–7664CrossRefGoogle Scholar
  68. 68.
    Webster L, Yan J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 2018, 98: 144411CrossRefGoogle Scholar
  69. 69.
    Zheng F W, Zhao J Z, Liu Z, et al. Tunable spin states in the two-dimensional magnet CrI3. Nanoscale, 2018, 10: 14298–14303CrossRefGoogle Scholar
  70. 70.
    McGuire M A, Dixit H, Cooper V R, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater, 2015, 27: 612–620CrossRefGoogle Scholar
  71. 71.
    Song T, Cai X, Tu M W Y, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360: 1214–1218CrossRefGoogle Scholar
  72. 72.
    Wang Z, Gutiérrez-Lezama I, Ubrig N, et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun, 2018, 9: 2516CrossRefGoogle Scholar
  73. 73.
    Klein D R, MacNeill D, Lado J L, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 2018, 360: 1218–1222CrossRefGoogle Scholar
  74. 74.
    Jiang S W, Li L Z, Wang Z F, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotech, 2018, 13: 549–553CrossRefGoogle Scholar
  75. 75.
    Jiang S W, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17: 406–410CrossRefGoogle Scholar
  76. 76.
    Valenzuela S O, Roche S. A barrier to spin filters. Nat Electron, 2018, 1: 328–329CrossRefGoogle Scholar
  77. 77.
    Richter N, Weber D, Martin F, et al. Temperature-dependent magnetic anisotropy in the layered magnetic semiconductors CrI3 and CrBr3. Phys Rev Mater, 2018, 2: 024004CrossRefGoogle Scholar
  78. 78.
    Yu X Y, Zhang X, Shi Q, et al. Large magnetocaloric effect in van der Waals crystal CrBr3. Front Phys, 2019, 14: 43501CrossRefGoogle Scholar
  79. 79.
    Thompson S E, Parthasarathy S. Moore’s law: the future of Si microelectronics. Mater Today, 2006, 9: 20–25CrossRefGoogle Scholar
  80. 80.
    Story T, Gałązka R R, Frankel R B, et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 1986, 56: 777–779CrossRefGoogle Scholar
  81. 81.
    Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408: 944–946CrossRefGoogle Scholar
  82. 82.
    Sivadas N, Daniels M W, Swendsen R H, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B, 2015, 91: 235425CrossRefGoogle Scholar
  83. 83.
    Xing W Y, Chen Y Y, Odenthal P M, et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater, 2017, 4: 024009CrossRefGoogle Scholar
  84. 84.
    Carteaux V, Brunet D, Ouvrard G, et al. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J Phys-Condens Matter, 1995, 7: 69–87CrossRefGoogle Scholar
  85. 85.
    Zhang X, Zhao Y L, Song Q, et al. Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr2Ge2Te6. Jpn J Appl Phys, 2016, 55: 033001CrossRefGoogle Scholar
  86. 86.
    Tian Y, Gray M J, Ji H W, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater, 2016, 3: 025035CrossRefGoogle Scholar
  87. 87.
    Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with giant anomalous Hall effect in two-dimensional Cr2Ge2Te6. 2019. ArXiv: 190109306Google Scholar
  88. 88.
    Wang K Y, Hu T, Jia F H, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl Phys Lett, 2019, 114: 092405CrossRefGoogle Scholar
  89. 89.
    Xie L, Guo L, Yu W Z, et al. Ultrasensitive negative photoresponse in 2D Cr2Ge2Te6 photodetector with light-induced carrier trapping. Nanotechnology, 2018, 29: 464002CrossRefGoogle Scholar
  90. 90.
    He J J, Ding G Q, Zhong C Y, et al. Remarkably enhanced ferromagnetism in a super-exchange governed Cr2Ge2Te6 monolayer via molecular adsorption. J Mater Chem C, 2019, 7: 5084–5093CrossRefGoogle Scholar
  91. 91.
    Lohmann M, Su T, Niu B, et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous Hall effect in Pt. Nano Lett, 2019, 19: 2397–2403CrossRefGoogle Scholar
  92. 92.
    Miao N H, Xu B, Zhu L G, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140: 2417–2420CrossRefGoogle Scholar
  93. 93.
    Lançon D, Ewings R A, Guidi T, et al. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys Rev B, 2018, 98: 134414CrossRefGoogle Scholar
  94. 94.
    ur Rehman Z, Muhammad Z, Adetunji Moses O, et al. Magnetic isotropy/anisotropy in layered metal phosphorous trichalcogenide MPS3 (M = Mn, Fe) single crystals. Micromachines, 2018, 9: 292CrossRefGoogle Scholar
  95. 95.
    Haines C R S, Coak M J, Wildes A R, et al. Pressure-induced electronic and structural phase evolution in the van der Waals compound FePS3. Phys Rev Lett, 2018, 121: 266801CrossRefGoogle Scholar
  96. 96.
    Kim K, Lim S Y, Lee J U, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun, 2019, 10: 345CrossRefGoogle Scholar
  97. 97.
    Qi J S, Wang H, Chen X F, et al. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl Phys Lett, 2018, 113: 043102CrossRefGoogle Scholar
  98. 98.
    Cai L, He J F, Liu Q H, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc, 2015, 137: 2622–2627CrossRefGoogle Scholar
  99. 99.
    Feng S M, Lin Z, Gan X, et al. Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horiz, 2017, 2: 72–80CrossRefGoogle Scholar
  100. 100.
    Cheng Y C, Zhu Z Y, Mi W B, et al. Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys Rev B, 2013, 87: 100401CrossRefGoogle Scholar
  101. 101.
    Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys Rev B, 2013, 87: 195201CrossRefGoogle Scholar
  102. 102.
    Fan X L, An Y R, Guo W J. Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res Lett, 2016, 11: 154CrossRefGoogle Scholar
  103. 103.
    Xia B R, Guo Q, Gao D Q, et al. High temperature ferromagnetism in Cu-doped MoS2 nanosheets. J Phys D-Appl Phys, 2016, 49: 165003CrossRefGoogle Scholar
  104. 104.
    Wang Y, Tseng L T, Murmu P P, et al. Defects engineering induced room temperature ferromagnetism in transition metal doped MoS2. Mater Des, 2017, 121: 77–84CrossRefGoogle Scholar
  105. 105.
    Li B, Xing T, Zhong M Z, et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 2017, 8: 1958CrossRefGoogle Scholar
  106. 106.
    Radhakrishnan S, Das D, Samanta A, et al. Fluorinated h-BN as a magnetic semiconductor. Sci Adv, 2017, 3: e1700842CrossRefGoogle Scholar
  107. 107.
    Jiang P H, Li L, Liao Z L, et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett, 2018, 18: 3844–3849CrossRefGoogle Scholar
  108. 108.
    O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18: 3125–3131CrossRefGoogle Scholar
  109. 109.
    Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotech, 2018, 13: 246–252CrossRefGoogle Scholar
  110. 110.
    Freitas D C, Weht R, Sulpice A, et al. Ferromagnetism in layered metastable 1T-CrTe2. J Phys-Condens Matter, 2015, 27: 176002CrossRefGoogle Scholar
  111. 111.
    Lin M W, Zhuang H L, Yan J, et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J Mater Chem C, 2016, 4: 315–322CrossRefGoogle Scholar
  112. 112.
    Kong T, Stolze K, Timmons E I, et al. VI3-a New layered ferromagnetic semiconductor. Adv Mater, 2019, 31: 1808074CrossRefGoogle Scholar
  113. 113.
    Tong Q J, Liu F, Xiao J, et al. Skyrmions in the Moiré of van der Waals 2D magnets. Nano Lett, 2018, 18: 7194–7199CrossRefGoogle Scholar
  114. 114.
    Asadi K, de Leeuw D M, de Boer B, et al. Organic non-volatile memories from ferroelectric phase-separated blends. Nat Mater, 2008, 7: 547–550CrossRefGoogle Scholar
  115. 115.
    Cross L E. Ferroelectric materials for electromechanical transducer applications. Mater Chem Phys, 1996, 43: 108–115CrossRefGoogle Scholar
  116. 116.
    Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng, 2000, 10: 136–146CrossRefGoogle Scholar
  117. 117.
    Wang Y, Niranjan M K, Janicka K, et al. Ferroelectric dead layer driven by a polar interface. Phys Rev B, 2010, 82: 094114CrossRefGoogle Scholar
  118. 118.
    Duan C G, Sabirianov R F, Mei W N, et al. Interface effect on ferroelectricity at the nanoscale. Nano Lett, 2006, 6: 483–487CrossRefGoogle Scholar
  119. 119.
    Jia C L, Nagarajan V, He J Q, et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat Mater, 2007, 6: 64–69CrossRefGoogle Scholar
  120. 120.
    Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422: 506–509CrossRefGoogle Scholar
  121. 121.
    Zhang Y, Li G P, Shimada T, et al. Disappearance of ferroelectric critical thickness in epitaxial ultrathin BaZrO3 films. Phys Rev B, 2014, 90: 184107CrossRefGoogle Scholar
  122. 122.
    Kooi B J, Noheda B. Ferroelectric chalcogenides-materials at the edge. Science, 2016, 353: 221–222CrossRefGoogle Scholar
  123. 123.
    Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274–278CrossRefGoogle Scholar
  124. 124.
    Liu K, Lu J, Picozzi S, et al. Intrinsic origin of enhancement of ferroelectricity in SnTe ultrathin films. Phys Rev Lett, 2018, 121: 027601CrossRefGoogle Scholar
  125. 125.
    Yang C, Liu Y Y, Tang G, et al. Non-monotonic thickness dependence of Curie temperature and ferroelectricity in two-dimensional SnTe film. Appl Phys Lett, 2018, 113: 082905CrossRefGoogle Scholar
  126. 126.
    Maisonneuve V, Cajipe V B, Simon A, et al. Ferrielectric ordering in lamellar CuInP2S6. Phys Rev B, 1997, 56: 10860–10868CrossRefGoogle Scholar
  127. 127.
    Vysochanskii Y M, Stephanovich V A, Molnar A A, et al. Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6. Phys Rev B, 1998, 58: 9119–9124CrossRefGoogle Scholar
  128. 128.
    Belianinov A, He Q, Dziaugys A, et al. CuInP2S6 Room temperature layered ferroelectric. Nano Lett, 2015, 15: 3808–3814CrossRefGoogle Scholar
  129. 129.
    Vasudevan R K, Balke N, Maksymovych P, et al. Ferroelectric or non-ferroelectric: why so many materials exhibit “ferroelectricity” on the nanoscale. Appl Phys Rev, 2017, 4: 021302CrossRefGoogle Scholar
  130. 130.
    Liu F, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7: 12357CrossRefGoogle Scholar
  131. 131.
    Si M, Liao P Y, Qiu G, et al. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano, 2018, 12: 6700–6705CrossRefGoogle Scholar
  132. 132.
    Lee H, Kang D H, Tran L. Indium selenide (In2Se3) thin film for phase-change memory. Mater Sci Eng-B, 2005, 119: 196–201CrossRefGoogle Scholar
  133. 133.
    Han G, Chen Z G, Drennan J, et al. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small, 2014, 10: 2747–2765CrossRefGoogle Scholar
  134. 134.
    Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3Phototransistors. Nano Lett, 2015, 15: 7853–7858CrossRefGoogle Scholar
  135. 135.
    Ding W J, Zhu J B, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2 Se3 and other III2-VI3 van der Waals materials. Nat Commun, 2017, 8: 14956CrossRefGoogle Scholar
  136. 136.
    Ye J, Soeda S, Nakamura Y, et al. Crystal structures and phase transformation in In2Se3 compound semiconductor. Jpn J Appl Phys, 1998, 37: 4264–4271CrossRefGoogle Scholar
  137. 137.
    Zhou Y, Wu D, Zhu Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17: 5508–5513CrossRefGoogle Scholar
  138. 138.
    Cui C, Hu W J, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18: 1253–1258CrossRefGoogle Scholar
  139. 139.
    Xiao J, Zhu H Y, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 2018, 120: 227601CrossRefGoogle Scholar
  140. 140.
    Wan S, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv Funct Mater, 2019, 29: 1808606CrossRefGoogle Scholar
  141. 141.
    Shi Y G, Guo Y F, Wang X, et al. A ferroelectric-like structural transition in a metal. Nat Mater, 2013, 12: 1024–1027CrossRefGoogle Scholar
  142. 142.
    Kim T H, Puggioni D, Yuan Y, et al. Polar metals by geometric design. Nature, 2016, 533: 68–72CrossRefGoogle Scholar
  143. 143.
    Fei Z, Zhao W, Palomaki T A, et al. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560: 336–339CrossRefGoogle Scholar
  144. 144.
    Keum D H, Cho S, Kim J H, et al. Bandgap opening in few-layered monoclinic MoTe2. Nat Phys, 2015, 11: 482–486CrossRefGoogle Scholar
  145. 145.
    Qi Y, Naumov P G, Ali M N, et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat Commun, 2016, 7: 11038CrossRefGoogle Scholar
  146. 146.
    Yuan S, Luo X, Chan H L, et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat Commun, 2019, 10: 1775CrossRefGoogle Scholar
  147. 147.
    Shirodkar S N, Waghmare U V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett, 2014, 112: 157601CrossRefGoogle Scholar
  148. 148.
    Fei R X, Kang W, Yang L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys Rev Lett, 2016, 117: 097601CrossRefGoogle Scholar
  149. 149.
    Wang H, Qian X F. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater, 2017, 4: 015042CrossRefGoogle Scholar
  150. 150.
    Hanakata P Z, Carvalho A, Campbell D K, et al. Polarization and valley switching in monolayer group-IV monochalcogenides. Phys Rev B, 2016, 94: 035304CrossRefGoogle Scholar
  151. 151.
    Sçahin H, Cahangirov S, Topsakal M, et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B, 2009, 80: 155453CrossRefGoogle Scholar
  152. 152.
    Blonsky M N, Zhuang H L, Singh A K, et al. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano, 2015, 9: 9885–9891CrossRefGoogle Scholar
  153. 153.
    Wu M, Zeng X C. Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett, 2017, 17: 6309–6314CrossRefGoogle Scholar
  154. 154.
    Wu J X, Yuan H T, Meng M M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotech, 2017, 12: 530–534CrossRefGoogle Scholar
  155. 155.
    Yoon S M, Song H J, Choi H C. p-type semiconducting GeSe combs by a vaporization-condensation-recrystallization (VCR) process. Adv Mater, 2010, 22: 2164–2167CrossRefGoogle Scholar
  156. 156.
    Mukherjee B, Cai Y, Tan H R, et al. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl Mater Interfaces, 2013, 5: 9594–9604CrossRefGoogle Scholar
  157. 157.
    Zhao L D, Lo S H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377CrossRefGoogle Scholar
  158. 158.
    Guo T F, Ma Z W, Lin G T, et al. Multiple structure and symmetry types in narrow temperature and magnetic field ranges in two-dimensional Cr2Ge2Te6 crystal. 2018. ArXiv: 180306113Google Scholar
  159. 159.
    Thiel L, Wang Z, Tschudin M A, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science, 2019, 364: 973–976CrossRefGoogle Scholar
  160. 160.
    Cheng R Q, Wang F, Yin L, et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat Electron, 2018, 1: 356–361CrossRefGoogle Scholar
  161. 161.
    Wang F, Wang Z X, Yin L, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem Soc Rev, 2018, 47: 6296–6341CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Microscale OptoelectronicsShenzhen UniversityShenzhenChina
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.School of Material Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations