A study on ionic gated MoS2 phototransistors

  • Binmin Wu
  • Xudong Wang
  • Hongwei Tang
  • Tie Lin
  • Hong Shen
  • Weida Hu
  • Xiangjian Meng
  • Wenzhong BaoEmail author
  • Jianlu WangEmail author
  • Junhao Chu
Research Paper


Molybdenum disulfide (MoS2) holds great promise in the future applications of nanoelectronics and optoelectronic devices. Exploring those interesting physical properties of MoS2 using a strong electric field provided by electrolyte-gel is a robust approach. Here, we fabricate an MoS2 phototransistor gated by electrolyte-gel which is located on a fused silica substrate. Under the modulation of electrolyte-gel, the Schottky barrier between MoS2 and source/drain electrodes can be widely regulated from 11 to 179 meV. The MoS2 phototransistor exhibits excellent responsivity of 2.68 × 104 A/W and detectivity of 9.6 × 1010 Jones under visible incident light at negative gate voltage modulation. We attribute the optoelectronic performance enhancement to the Schottky barrier modulation of electrolyte-gel gating. It makes the device suitable for applications in high-sensitive photodetectors.


MoS2 phototransistor electrolyte-gel gating Schottky barrier electric double layer two-dimensional materials 



This work was partially supported by Major State Basic Research Development Program (Grant Nos. 2016YFB0400801), National Natural Science Foundation of China (Grant Nos. 61722408, 61835012, 51802041), Key Research Project of Frontier Sciences of Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC042, QYZDB-SSW-JSC016), National Postdoctoral Program for Innovative Talents (Grant No. BX20180329), and Shanghai Sailing Program (Grant No. 19YF1454900).

Supplementary material

11432_2019_1472_MOESM1_ESM.pdf (550 kb)
A study on ionic gated MoS2 phototransistors


  1. 1.
    Wang X D, Liu C S, Chen Y, et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater, 2017, 4: 025036CrossRefGoogle Scholar
  2. 2.
    Chen Y, Wang X D, Wang P, et al. Optoelectronic properties of few-layer MoS2 FET gated by ferroelectric relaxor polymer. ACS Appl Mater Interfaces, 2016, 8: 32083–32088CrossRefGoogle Scholar
  3. 3.
    Lan C Y, Zhou Z Y, Wei R J, et al. Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater Today Energy, 2019, 11: 61–82CrossRefGoogle Scholar
  4. 4.
    Alarawi A, Ramalingam V, He J H. Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater Today Energy, 2019, 11: 1–23CrossRefGoogle Scholar
  5. 5.
    Ai Y, Hsu T H, Wu D C, et al. An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core-shell nanoparticles. J Mater Chem C, 2018, 6: 5514–5520CrossRefGoogle Scholar
  6. 6.
    Medina H, Li J G, Su T Y, et al. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem Mater, 2017, 29: 1587–1598CrossRefGoogle Scholar
  7. 7.
    Novoselov K S, McCann E, Morozov S V, et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat Phys, 2006, 2: 177–180CrossRefGoogle Scholar
  8. 8.
    Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 6: 652–655CrossRefGoogle Scholar
  9. 9.
    Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805CrossRefGoogle Scholar
  10. 10.
    Naber R C G, Tanase C, Blom P W M, et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat Mater, 2005, 4: 243–248CrossRefGoogle Scholar
  11. 11.
    Chang Y H, Zhang W J, Zhu Y H, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8: 8582–8590CrossRefGoogle Scholar
  12. 12.
    Tian B B, Liu L, Yan M G, et al. A robust artificial synapse based on organic ferroelectric polymer. Adv Electron Mater, 2019, 5: 1800600CrossRefGoogle Scholar
  13. 13.
    Wang J L, Hu W D. Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors. Chin Phys B, 2017, 26: 037106CrossRefGoogle Scholar
  14. 14.
    Wang X D, Chen Y, Wu G J, et al. Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. npj 2D Mater Appl, 2017, 1: 38CrossRefGoogle Scholar
  15. 15.
    Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8: 497–501CrossRefGoogle Scholar
  16. 16.
    Wang X D, Wang P, Wang J L, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater, 2015, 27: 6575–6581CrossRefGoogle Scholar
  17. 17.
    Gao G Y, Wan B S, Liu X Q, et al. Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv Mater, 2018, 30: 1705088CrossRefGoogle Scholar
  18. 18.
    Park M, Park Y J, Chen X, et al. MoS2-based tactile sensor for electronic skin applications. Adv Mater, 2016, 28: 2556–2562CrossRefGoogle Scholar
  19. 19.
    Kim J S, Yoo H W, Choi H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett, 2014, 14: 5941–5947CrossRefGoogle Scholar
  20. 20.
    Perkins F K, Friedman A L, Cobas E, et al. Chemical vapor sensing with monolayer MoS2. Nano Lett, 2013, 13: 668–673CrossRefGoogle Scholar
  21. 21.
    Jin K, Xie L M, Tian Y, et al. Au-modified monolayer MoS2 sensor for DNA detection. J Phys Chem C, 2016, 120: 11204–11209CrossRefGoogle Scholar
  22. 22.
    Gao N, Fang X S. Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem Rev, 2015, 115: 8294–8343CrossRefGoogle Scholar
  23. 23.
    Liu S X, Zheng L X, Yu P P, et al. Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv Funct Mater, 2016, 26: 3331–3339CrossRefGoogle Scholar
  24. 24.
    Ouyang W X, Teng F, Fang X S. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv Funct Mater, 2018, 28: 1707178CrossRefGoogle Scholar
  25. 25.
    Tang S Y, Medina H, Yen Y T, et al. Enhanced photocarrier generation with selectable wavelengths by M-decorated-CuInS2 nanocrystals (M=Au and Pt) synthesized in a single surfactant process on MoS2 Bilayers. Small, 2019, 15: 1803529CrossRefGoogle Scholar
  26. 26.
    Yang W, Chen J X, Zhang Y, et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology. Adv Funct Mater, 2019, 29: 1808182CrossRefGoogle Scholar
  27. 27.
    Kc S, Longo R C, Wallace R M, et al. Computational study of MoS2/HfO2 defective interfaces for nanometer-scale electronics. ACS Omega, 2017, 2: 2827–2834CrossRefGoogle Scholar
  28. 28.
    Song J G, Kim S J, Woo W J, et al. Effect of Al2O2 deposition on performance of top-gated monolayer MoS2-based field effect transistor. ACS Appl Mater Interfaces, 2016, 8: 28130–28135CrossRefGoogle Scholar
  29. 29.
    Yin C, Wang X D, Chen Y, et al. A ferroelectric relaxor polymer-enhanced p-type WSe2 transistor. Nanoscale, 2018, 10: 1727–1734CrossRefGoogle Scholar
  30. 30.
    Tu L Q, Wang X D, Wang J L, et al. Ferroelectric negative capacitance field effect transistor. Adv Electron Mater, 2018, 4: 1800231CrossRefGoogle Scholar
  31. 31.
    Wang J L, Fang H H, Wang X D, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small, 2017, 13: 1700894CrossRefGoogle Scholar
  32. 32.
    Xue S, Zhao X L, Wang J L, et al. Preparation of La0.67Ca0.23Sr0.1MnO3 thin films with interesting electrical and magnetic properties via pulsed-laser deposition. Sci China Phys Mech Astron, 2017, 60: 027521CrossRefGoogle Scholar
  33. 33.
    Liu Y, Guo J, Zhu E B, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature, 2018, 557: 696–700CrossRefGoogle Scholar
  34. 34.
    Guo R, You L, Zhou Y, et al. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat Commun, 2013, 4: 1990CrossRefGoogle Scholar
  35. 35.
    Wang J, Yao Q, Huang C W, et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv Mater, 2016, 28: 8302–8308CrossRefGoogle Scholar
  36. 36.
    Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13: 1128–1134CrossRefGoogle Scholar
  37. 37.
    Osinsky A, Gangopadhyay S, Lim B W, et al. Schottky barrier photodetectors based on AlGaN. Appl Phys Lett, 1998, 72: 742–744CrossRefGoogle Scholar
  38. 38.
    Yang Y B, Huang L, Xiao Y, et al. Tunable polarity behavior and high-performance photosensitive characteristics in Schottky-barrier field-effect transistors based on multilayer WS2. ACS Appl Mater Interfaces, 2018, 10: 2745–2751CrossRefGoogle Scholar
  39. 39.
    Zhang Y J, Ye J T, Matsuhashi Y, et al. Ambipolar MoS2 thin flake transistors. Nano Lett, 2012, 12: 1136–1140CrossRefGoogle Scholar
  40. 40.
    Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater, 2012, 22: 1385–1390CrossRefGoogle Scholar
  41. 41.
    Das S R, Kwon J, Prakash A, et al. Low-frequency noise in MoSe2 field effect transistors. Appl Phys Lett, 2015, 106: 083507CrossRefGoogle Scholar
  42. 42.
    Chen Y, Wang X D, Wu G J, et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small, 2018, 14: 1703293CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Binmin Wu
    • 1
    • 2
    • 4
  • Xudong Wang
    • 1
  • Hongwei Tang
    • 3
  • Tie Lin
    • 1
  • Hong Shen
    • 1
  • Weida Hu
    • 1
  • Xiangjian Meng
    • 1
  • Wenzhong Bao
    • 3
    Email author
  • Jianlu Wang
    • 1
    Email author
  • Junhao Chu
    • 1
    • 2
  1. 1.State Key Laboratory of Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.School of Physical Science and TechnologyShanghai Tech UniversityShanghaiChina
  3. 3.State Key Laboratory of ASIC and System, School of MicroelectronicsFudan UniversityShanghaiChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations