Advertisement

Analysis of irregular repetition spatially-coupled slotted ALOHA

  • Hanxiao Yu
  • Zesong FeiEmail author
  • Congzhe Cao
  • Ming Xiao
  • Dai Jia
  • Neng Ye
Research Paper Special Focus on B5G Wireless Communication Networks
  • 6 Downloads

Abstract

Contention-based access is a promising technology for massive and sporadic transmissions. In this paper, we propose a novel contention-based multiple access scheme, named irregular repetition spatially-coupled slotted ALOHA (IRSC-SA), motivated by the spatial coupling and irregular repetition techniques. There are different classes of users and slots in IRSC-SA, which result in unequal protection for different users. Considering that, we derive a novel density evolution (DE) method, which deals with unequal packet protection and introduces Bayesian reasoning to analyze the throughput threshold of the proposed IRSC-SA. Theoretical analysis and simulation results show that the proposed scheme achieves better asymptotic threshold and system packet throughput performance than the conventional spatially-coupled slotted ALOHA.

Keywords

spatial coupling coded slotted ALOHA contention-based access density evolution irregular repetition 

Notes

Acknowledgements

This work was partially supported by Beijing Natural Science Foundation (Grant No. L182038), Chinese Ministry of Education-China Mobile Communication Corporation Research Fund (Grant No. MCM20170101), China National S&T Major Project (Grant No. 2017ZX03001017), National Natural Science Foundation of China (Grant No. 61871032), Beijing Major Science and Technology Projects (Grant No. D171100006317001), Ericsson company, and 111 Project of China (Grant No. B14010).

References

  1. 1.
    Bockelmann C, Pratas N, Nikopour H, et al. Massive machine-type communications in 5G: physical and MAC-layer solutions. IEEE Commun Mag, 2016, 54: 59–65CrossRefGoogle Scholar
  2. 2.
    3GPP. Study on Scenarios and Requirements for Next Generation Access Technologies. TR 38.913. 2018. https://www.3gpp.org/ftp/specs/archive/38_series/38.913/
  3. 3.
    Saad W, Bennis M, Chen M Z. A vision of 6G wireless systems: applications trends technologies and open research problems. 2019. arXiv: 1902.10265Google Scholar
  4. 4.
    Tariq F, Khandaker M, Wong K, et al. A speculative study on 6G. 2019. arXiv: 1902.06700Google Scholar
  5. 5.
    Wu J, Fan P. A survey on high mobility wireless communications: challenges, opportunities and solutions. IEEE Access, 2016, 4: 450–476CrossRefGoogle Scholar
  6. 6.
    Saito Y, Kishiyama Y, Benjebbour A, et al. Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Proceedings of IEEE 77th Vehicular Technology Conference, Dresden, 2013. 1–5Google Scholar
  7. 7.
    Yuan Y, Yuan Z, Yu G, et al. Non-orthogonal transmission technology in LTE evolution. IEEE Commun Mag, 2016, 54: 68–74CrossRefGoogle Scholar
  8. 8.
    Taherzadeh M, Nikopour H, Bayesteh A, et al. SCMA codebook design. In: Proceedings of IEEE Vehicular Technology Conference, 2014. 1–5Google Scholar
  9. 9.
    Au K, Zhang L, Nikopour H, et al. Uplink contention based SCMA for 5G radio access. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), 2014. 900–905Google Scholar
  10. 10.
    3GPP. Study on Non-Orthogonal Multiple Access (NOMA) for NR. TR 38.913. 2018. https://www.3gpp.org/ftp/specs/archive/38_series/38.812/
  11. 11.
    Zhang Z, Wang X, Zhang Y, et al. Grant-free rateless multiple access: a novel massive access scheme for internet of things. IEEE Commun Lett, 2016, 20: 2019–2022CrossRefGoogle Scholar
  12. 12.
    Shirvanimoghaddam M, Li Y H, Vucetic B. Multiple access analog fountain codes. In: Proceedings of IEEE International Symposium on Information Theory, Honolulu, 2014. 2167–2171Google Scholar
  13. 13.
    Choudhury G, Rappaport S. Diversity ALOHA-a random access scheme for satellite communications. IEEE Trans Commun, 1983, 31: 450–457CrossRefGoogle Scholar
  14. 14.
    Casini E, de Gaudenzi R, Herrero O R. Contention resolution diversity slotted ALOHA (CRDSA): an enhanced random access schemefor satellite access packet networks. IEEE Trans Wirel Commun, 2007, 6: 1408–1419CrossRefGoogle Scholar
  15. 15.
    Liva G. Graph-based analysis and optimization of contention resolution diversity slotted ALOHA. IEEE Trans Commun, 2011, 59: 477–487CrossRefGoogle Scholar
  16. 16.
    Sun Z, Xie Y, Yuan J, et al. Coded slotted ALOHA schemes for erasure channels. In: Proceedings of IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016. 1–6Google Scholar
  17. 17.
    Paolini E, Stefanovic C, Liva G, et al. Coded random access: applying codes on graphs to design random access protocols. IEEE Commun Mag, 2015, 53: 144–150CrossRefGoogle Scholar
  18. 18.
    Jia D, Fei Z S, Xiao M, et al. Enhanced frameless slotted ALOHA protocol with Markov chains analysis. Sci China Inf Sci, 2018, 61: 102304MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cao C Z, Fei Z S, Xiao M, et al. An extended packetization-aware mapping algorithm for scalable video coding in finite-length fountain codes. Sci China Inf Sci, 2013, 56: 042311Google Scholar
  20. 20.
    Huang J X, Fei Z S, Cao C Z, et al. On-line fountain codes with unequal error protection. IEEE Commun Lett, 2017, 21: 1225–1228CrossRefGoogle Scholar
  21. 21.
    Huang J X, Fei Z S, Cao C Z, et al. Performance analysis and improvement of online fountain codes. IEEE Trans Commun, 2018, 66: 5916–5926CrossRefGoogle Scholar
  22. 22.
    Toni L, Frossard P. Prioritized random MAC optimization via graph-based analysis. IEEE Trans Commun, 2015, 63: 5002–5013CrossRefGoogle Scholar
  23. 23.
    Stefanovic V, Popovski P. Coded slotted ALOHA with varying packet loss rate across users. In: Proceedings of IEEE Global Conference on Signal and Information Processing, Austin, 2013. 787–790Google Scholar
  24. 24.
    Ivanov M, Brannstrom F, Graell i Amat A, et al. Unequal error protection in coded slotted ALOHA. IEEE Wirel Commun Lett, 2016, 5: 536–539CrossRefGoogle Scholar
  25. 25.
    Sandgren E, Graell i Amat A, Brannstrom F. On frame asynchronous coded slotted ALOHA: asymptotic, finite length, and delay analysis. IEEE Trans Commun, 2017, 65: 691–704CrossRefGoogle Scholar
  26. 26.
    Cao C Z, Koike-Akino T, Wang Y, et al. Irregular polar coding for massive MIMO. In: Proceedings of IEEE Global Communications Conference, Singapore, 2017Google Scholar
  27. 27.
    Koike-Akino T, Cao C Z, Wang Y, et al. Irregular polar coding for complexity-constrained lightwave systems. J Lightw Technol, 2018, 36: 2248–2258CrossRefGoogle Scholar
  28. 28.
    Koike-Akino T, Cao C Z, Wang Y. Turbo product codes with irregular polar coding for high-throughput parallel decoding in wireless OFDM transmission. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1–7Google Scholar
  29. 29.
    Kudekar S, Richardson T J, Urbanke R L. Threshold saturation via spatial coupling: why convolutional LDPC ensembles perform so well over the BEC. IEEE Trans Inform Theor, 2011, 57: 803–834MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Engdahl K, Lentmaier M, Zigangirov K S. On the theory of low-density convolutional codes. In: Proceedings of International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, 1999. 77–86Google Scholar
  31. 31.
    Liva G, Paolini E, Lentmaier M, et al. Spatially-coupled random access on graphs. In: Proceedings of IEEE International Symposium on Information Theory Proceedings (ISIT), Cambridge, 2012. 478–482Google Scholar
  32. 32.
    Richardson T J, Shokrollahi M A, Urbanke R L. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans Inform Theor, 2001, 47: 619–637MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Narayanan K R, Pfister H D. Iterative collision resolution for slotted ALOHA: An optimal uncoordinated transmission policy. In: Proceedings of International Symposium on Turbo Codes and Iterative Information Processing (ISTC). Gothenburg, 2012. 136–139Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hanxiao Yu
    • 1
  • Zesong Fei
    • 1
    Email author
  • Congzhe Cao
    • 2
  • Ming Xiao
    • 3
  • Dai Jia
    • 1
  • Neng Ye
    • 1
  1. 1.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.School of Electrical EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations