Advertisement

Control design in the presence of actuator saturation: from individual systems to multi-agent systems

  • Zongli LinEmail author
Perspective
  • 49 Downloads

Notes

Acknowledgements

This work was supported in part by US Army Research Office (Grant No. W911NF-17-1-0535).

References

  1. 1.
    Sussmann H J, Sontag E D, Yang Y. A general result on the stabilization of linear systems using bounded controls. IEEE Trans Autom Control, 1994, 39: 2411–2425MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fuller A T. In-the-large stability of relay and saturating control systems with linear controllers. Int J Control, 1969, 10: 457–480MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sussmann H J, Yang Y. On the stabilizability of multiple integrators by means of bounded feedback controls. In: Proceedings of the 30th IEEE Conference on Decision and Control, 1991. 70–72Google Scholar
  4. 4.
    Yang Y. Global stabilization of linear systems with bounded feedback. Dissertation for Ph.D. Degree. New Brunswick: Rutgers, The State University of New Jersey, 1993Google Scholar
  5. 5.
    Teel A R. Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst Control Lett, 1992, 18: 165–171MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lin Z L. Low Gain Feedback. Berlin: Springer, 1999Google Scholar
  7. 7.
    Lin Z L. Global control of linear systems with saturating actuators. Automatica, 1998, 34: 897–905MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lin Z L, Pachter M, Banda S. Toward improvement of tracking performance nonlinear feedback for linear systems. Int J Control, 1998, 70: 1–11MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hu T S, Lin Z L. Control Systems with Actuator Saturation: Analysis and Design. Boston: Birkhäuser, 2001CrossRefzbMATHGoogle Scholar
  10. 10.
    Li Y L, Lin Z L. Stability and Performance of Control Systems with Actuator Saturation. Boston: Birkhäuser, 2018CrossRefzbMATHGoogle Scholar
  11. 11.
    Abdessameud A, Tayebi A. On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Syst Control Lett, 2010, 59: 812–821MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fu J J, Wang J Z. Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Syst Control Lett, 2016, 93: 1–12MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fu J, Wen G, Yu W, et al. Finite-time consensus for second-order multi-agent systems with input saturation. IEEE Trans Circ Syst II Express Briefs, 2018, 65: 1758–1762CrossRefGoogle Scholar
  14. 14.
    Wei W, Xiang J, Li Y. Consensus problems for linear time-invariant multi-agent systems with saturation constraints. IET Control Theory Appl, 2011, 5: 823–829MathSciNetCrossRefGoogle Scholar
  15. 15.
    Meng Z Y, Zhao Z Y, Lin Z L. On global leaderfollowing consensus of identical linear dynamic systems subject to actuator saturation. Syst Control Lett, 2013, 62: 132–142CrossRefzbMATHGoogle Scholar
  16. 16.
    Ren W. On consensus algorithms for double-integrator dynamics. IEEE Trans Autom Control, 2008, 53: 1503–1509MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Xie Y J, Lin Z L. Global optimal consensus for multiagent systems with bounded controls. Syst Control Lett, 2017, 102: 104–111CrossRefzbMATHGoogle Scholar
  18. 18.
    Zhao Z Y, Lin Z L. Global leader-following consensus of a group of general linear systems using bounded controls. Automatica, 2016, 68: 294–304MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhao Z Y, Lin Z L. Discrete-time global leaderfollowing consensus of a group of general linear systems using bounded controls. Inter J Robust Nonlinear Control, 2017, 27: 3433–3465zbMATHGoogle Scholar
  20. 20.
    Chu H J, Yi B W, Zhang G Q, et al. Performance improvement of consensus tracking for linear multiagent systems with input saturation: a gain scheduled approach. IEEE Trans Syst Man Cybern Syst, 2017. doi: 10.1109/TSMC.2017.2698210Google Scholar
  21. 21.
    Chu H, Zhang W. Adaptive consensus tracking for linear multi-agent systems with input saturation. Trans Inst Meas Control, 2016, 38: 1434–1441CrossRefGoogle Scholar
  22. 22.
    Fan M C, Zhang H T, Lin Z L. Distributed semiglobal consensus with relative output feedback and input saturation under directed switching networks. IEEE Trans Circ Syst II, 2015, 62: 796–800Google Scholar
  23. 23.
    Wang X L, Wang X F. Semi-global consensus of multiagent systems with intermittent communications and low-gain feedback. IET Control Theory Appl, 2015, 9: 766–774MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shi L R, Li Y L, Lin Z L. Semi-global leader-following output consensus of heterogeneous multi-agent systems with input saturation. Int J Robust Nonlinear Control, 2018, 28: 4916–4930CrossRefzbMATHGoogle Scholar
  25. 25.
    Shi L R, Zhao Z Y, Lin Z L. Robust semi-global leaderfollowing practical consensus of a group of linear systems with imperfect actuators. Sci China Inf Sci, 2017, 60: 072201MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shi L R, Zhao Z Y, Lin Z L. Robust semi-global containment control of identical linear systems with imperfect actuators. In: Proceedings of the 56th IEEE Conference on Decision and Control, 2017. 4058–4063Google Scholar
  27. 27.
    Su H S, Chen M Z Q, Lam J, et al. Semi-global leaderfollowing consensus of linear multi-agent systems with input saturation via low gain feedback. IEEE Trans Circ Syst I, 2013, 60: 1881–1889Google Scholar
  28. 28.
    Su H S, Chen M Z Q, Chen G R. Robust semiglobal coordinated tracking of linear multi-agent systems with input saturation. Int J Robust Nonlinear Control, 2015, 25: 2375–2390CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang Q L, Yu C B, Gao H J. Semiglobal synchronization of multiple generic linear agents with input saturation. Int J Robust Nonlinear Control, 2014, 24: 3239–3254MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wei A R, Hu X M, Wang Y Z. Consensus of linear multi-agent systems subject to actuator saturation. Int J Control Autom Syst, 2013, 11: 649–656CrossRefGoogle Scholar
  31. 31.
    Yang T, Stoorvogel A A, Grip H F, et al. Semi-global regulation of output synchronization for heterogeneous networks of non-introspective, invertible agents subject to actuator saturation. Int J Robust Nonlinear Control, 2014, 24: 548–566MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhao Z Y, Hong Y G, Lin Z L. Semi-global output consensus of a group of linear systems in the presence of external disturbances and actuator saturation: an output regulation approach. Int J Robust Nonlinear Control, 2016, 26: 1353–1375MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhao Z Y, Lin Z L. Semi-global leader-following consensus of multiple linear systems with position and rate limited actuators. Int J Robust Nonlinear Control, 2015, 25: 2083–2100MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Li Y L, Lin Z L. Regional leader-following consensus of multi-agent systems with saturating actuators. In: Proceedings of the 36th Chinese Control Conference, 2017. 8401–8406Google Scholar
  35. 35.
    Li Y L, Lin Z L. On the estimation of the domain of consensus for discrete-time multi-agent systems subject to actuator saturation. In: Proceedings of the 13th IEEE International Conference on Control and Automation, 2017. 203–208Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Charles L. Brown Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations