Lattice reduction aided belief propagation for massive MIMO detection

  • Senjie ZhangEmail author
  • Zhiqiang He
  • Kai Niu
  • Shi Jin
  • Hong Cheng
Research Paper


Efficient massive MIMO detection for practical deployment, which is with spatially correlated channel and high-order modulation, is a challenging topic for the fifth generation mobile communication (5G). In this paper, lattice reduction aided belief propagation (LRA-BP) is proposed for massive MIMO detection. LRA-BP applies the message updating rules of Markov random field based belief propagation (MRF-BP) in lattice reduced MIMO system. With the lattice reduced, well-conditioned MIMO channel, LRA-BP obtains better message updating and detection performance in spatially correlated channel than MRF-BP. Log-domain arithmetic is used in LRA-BP for computational complexity reduction. Simulation result shows that LRA-BP outperforms MRF-BP with 3–10 dB in terms of required SNR for 1% packet error rate in spatially correlated channel for 256-QAM. We also show that LRA-BP requires much lower complexity compared with MRF-BP.


massive MIMO MIMO detection belief propagation graph-based detection lattice reduction Markov random field 


  1. 1.
    Andrews J G, Buzzi S, Choi W, et al. What will 5G be? IEEE J Sel Areas Commun, 2014, 32: 1065–1082CrossRefGoogle Scholar
  2. 2.
    Boccardi F, Heath R W, Lozano A, et al. Five disruptive technology directions for 5G. IEEE Commun Mag, 2014, 52: 74–80CrossRefGoogle Scholar
  3. 3.
    Ji H, Kim Y, Lee J, et al. Overview of full-dimension mimo in lte-advanced pro. IEEE Commun Mag, 2017, 55: 176–184CrossRefGoogle Scholar
  4. 4.
    Yang S, Hanzo L. Fifty years of MIMO detection: the road to large-scale MIMOs. IEEE Commun Surv Tut, 2015, 17: 1941–1988CrossRefGoogle Scholar
  5. 5.
    Tang C, Tao Y, Chen Y, et al. Approximate iteration detection and precoding in massive MIMO. China Commun, 2018, 15: 183–196CrossRefGoogle Scholar
  6. 6.
    Chen Y, Gao X Q, Xia X G, et al. Robust MMSE precoding for massive MIMO transmission with hardware mismatch. Sci China Inf Sci, 2018, 61: 042303MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hu J, Duman T M. Graph-based detector for blast architecture. In: Proceedings of IEEE International Conference on Communications, Glasgow, 2007. 1018–1023Google Scholar
  8. 8.
    Yang J, Zhang C, Liang X, et al. Improved symbol-based belief propagation detection for large-scale mimo. In: Proceedings of IEEE Workshop on Signal Processing Systems (SiPS), Hangzhou, 2015. 1–6Google Scholar
  9. 9.
    Long F, Lv T, Cao R, et al. Single edge based belief propagation algorithms for mimo detection. In: Proceedings of the 34th IEEE Sarnoff Symposium, Princeton, 2011. 1–5Google Scholar
  10. 10.
    Bickson D, Dolev D. Linear detection via belief propagation. In: Proceedings of the 45th Annual Allerton Conference on Communication, Control, and Computing, Allerton, 2007. 7Google Scholar
  11. 11.
    Yoon S, Chae C B. Low-complexity MIMO detection based on belief propagation over pairwise graphs. IEEE Trans Veh Technol, 2014, 63: 2363–2377CrossRefGoogle Scholar
  12. 12.
    Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco: Morgan Kaufmann Publishers Inc., 1988zbMATHGoogle Scholar
  13. 13.
    Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Trans Inform Theor, 2001, 47: 498–519MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Montanari A, Prabhakar B, Tse D. Belief propagation based multiuser detection. In: Proceedings of the 43th Allerton Conference on Communications, Control and Computing, Monticello, 2005. 86Google Scholar
  15. 15.
    Takahashi T, Ibi S, Sampei S. Design of adaptively scaled belief in large mimo detection for high-order modulation. In: Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, 2017. 1800–1505Google Scholar
  16. 16.
    Som P, Datta T, Chockalingam A, et al. Improved large-mimo detection based on damped belief propagation. In: Proceedings of IEEE Information Theory Workshop on Information Theory, Cairo, 2010. 1–5Google Scholar
  17. 17.
    Bickson D, Dolev D, Shental O, et al. Gaussian belief propagation based multiuser detection. In: Proceedings of IEEE International Symposium on Information Theory, Toronto, 2008. 1878–1882Google Scholar
  18. 18.
    3rd Generation Partnership Project (3GPP). Study on 3d channel model for LTE. TR-36.873. DynaReport/36873.htmGoogle Scholar
  19. 19.
    Xu W L. Capacity improvement analysis of 3D-beamforming in small cell systems. Sci China Inf Sci, 2018, 61: 022305CrossRefGoogle Scholar
  20. 20.
    Wubben D, Seethaler D, Jalden J, et al. Lattice reduction. IEEE Signal Process Mag, 2011, 28: 70–91CrossRefGoogle Scholar
  21. 21.
    Wubben D, Bohnke R, Kuhn V, et al. Mmse-based lattice-reduction for near-ml detection of mimo systems. In: Proceedings of ITG Workshop on Smart Antennas, Munich, 2004. 106–113Google Scholar
  22. 22.
    Shabany M, Gulak P G. The application of lattice-reduction to the k-best algorithm for near-optimal mimo detection. In: Proceedings of IEEE International Symposium on Circuits and Systems, Seattle, 2008. 316–319Google Scholar
  23. 23.
    Peng G, Liu L, Zhou S, et al. Algorithm and architecture of a low-complexity and high-parallelism preprocessing-based k-best detector for large-scale MIMO systems. IEEE Trans Signal Process, 2018, 66: 1860–1875MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu T H. Comparisons of two real-valued MIMO signal models and their associated ZF-SIC detectors over the Rayleigh fading channel. IEEE Trans Wirel Commun, 2013, 12: 6054–6066CrossRefGoogle Scholar
  25. 25.
    3rd Generation Partnership Project (3GPP). Physical channels and modulation. TS-36.211. DynaReport/36211.htmGoogle Scholar
  26. 26.
    Lenstra A K, Lenstra H W, Lovász L. Factoring polynomials with rational coefficients. Math Ann, 1982, 261: 515–534MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Jensen J. Statistics for Petroleum Engineers and Geoscientists. Amsterdam: Elsevier, 2000. 207Google Scholar
  28. 28.
    Windpassinger C. Detection and precoding for multiple input multiple output channels. Dissertation for Ph.D. Degree. Nurnberg: University Erlangen, 2004. 33–36Google Scholar
  29. 29.
    Rasmussen C E, Williams C. Gaussian Processes for Machine Learning. Cambridge: The MIT Press, 2006zbMATHGoogle Scholar
  30. 30.
    Robertson P, Hoeher P, Villebrun E. Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding. Eur Trans Telecomm, 1997, 8: 119–125CrossRefGoogle Scholar
  31. 31.
    3rd Generation Partnership Project (3GPP). Multiplexing and channel coding. TS-36.212. DynaReport/36212.htmGoogle Scholar
  32. 32.
    Rusek F, Persson D, Lau B K, et al. Scaling up mimo: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60CrossRefGoogle Scholar
  33. 33.
    Studer C, Seethaler D, Bolcskei H. Finite lattice-size effects in mimo detection. In: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2008. 2032–2037CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Senjie Zhang
    • 1
    Email author
  • Zhiqiang He
    • 1
  • Kai Niu
    • 1
  • Shi Jin
    • 2
  • Hong Cheng
    • 3
  1. 1.Key Laboratory of Universal Wireless Communications, Ministry of EducationBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.National Mobile Communications Research LaboratorySoutheast UniversityNanjingChina
  3. 3.Intel Labs ChinaBeijingChina

Personalised recommendations