Silicon-based on-chip hybrid (de)multiplexers

  • Chenlei Li
  • Hao Wu
  • Ying Tan
  • Shipeng Wang
  • Daoxin DaiEmail author


A review is given on the recent progress of silicon-based on-chip hybrid multiplexers, which are the key elements to enable more than one (de)multiplexing techniques simultaneously, including wavelength-division-multiplexing (WDM), polarization-division-multiplexing (PDM), and mode-division-multiplexing (MDM). This helps enhance the link capacity of optical interconnects multiplexed with many channels. The first part gives a review on the recent developed silicon-based hybrid WDM-PDM (de)multiplexers enabling WDM and PDM simultaneously, which helps achieve 2N channels by introducing N wavelengths and dual polarizations. The recent progress of silicon-based hybrid WDM-MDM (de)multiplexers developed is reviewed in the second part. With the hybrid WDM-MDM (de)multiplexers, one can achieve N×M channels by using N wavelengths and M guided-modes. Finally, the silicon-based hybrid MDM-PDM (de)multiplexers are presented as the key to enhance the link capacity for a single wavelength carrier.


silicon photonics (de)multiplexing wavelength mode polarization waveguide 



This work was supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 61725503, 61422510, 61431166001), and Zhejiang Provincial Natural Science Foundation (Grant No. Z18F050002).


  1. 1.
    Agrell E, Karlsson M, Chraplyvy A R, et al. Roadmap of optical communications. J Opt, 2016, 18: 063002CrossRefGoogle Scholar
  2. 2.
    Tkach R W. Scaling optical communications for the next decade and beyond. Bell Labs Tech J, 2010, 14: 3–9CrossRefGoogle Scholar
  3. 3.
    Eldada L. Advances in ROADM technologies and subsystems. Proc SPIE, 2005, 5970: 611–620Google Scholar
  4. 4.
    Dong P, Chen Y K, Duan G H, et al. Silicon photonic devices and integrated circuits. Nanophotonics, 2014, 3: 215–228CrossRefGoogle Scholar
  5. 5.
    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photonic, 2013, 7: 354–362CrossRefGoogle Scholar
  6. 6.
    Winzer P J. Making spatial multiplexing a reality. Nat Photonic, 2014, 8: 345–348CrossRefGoogle Scholar
  7. 7.
    van Uden R G H, Correa R A, Lopez E A, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonic, 2014, 8: 865–870CrossRefGoogle Scholar
  8. 8.
    Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt, 1982, 21: 1950–1955CrossRefGoogle Scholar
  9. 9.
    Randel S, Ryf R, Sierra A, et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. Opt Express, 2011, 19: 16697–16707CrossRefGoogle Scholar
  10. 10.
    Dai D X, Bowers J E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics, 2014, 3: 283–311CrossRefGoogle Scholar
  11. 11.
    Doerr C R, Taunay T F. Silicon photonics core-, wavelength-, and polarization-diversity receiver. IEEE Photonic Technol Lett, 2011, 23: 597–599CrossRefGoogle Scholar
  12. 12.
    Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci Appl, 2012, 1: 500–505CrossRefGoogle Scholar
  13. 13.
    Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18: 073003CrossRefGoogle Scholar
  14. 14.
    Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quant Electron, 2006, 12: 1678–1687CrossRefGoogle Scholar
  15. 15.
    Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol, 2006, 24: 4600–4615CrossRefGoogle Scholar
  16. 16.
    Kopp C, Bernabé S, Bakir B B, et al. Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J Sel Top Quant Electron, 2011, 17: 498–509CrossRefGoogle Scholar
  17. 17.
    Tsybeskov L, Lockwood D J, Ichikawa M. Silicon photonics: CMOS going optical [scanning the issue]. Proc IEEE, 2009, 97: 1161–1165CrossRefGoogle Scholar
  18. 18.
    Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nat Photonic, 2010, 4: 492–494CrossRefGoogle Scholar
  19. 19.
    Lim A E J, Song J F, Fang Q, et al. Review of silicon photonics foundry efforts. IEEE J Sel Top Quant Electron, 2014, 20: 405–416CrossRefGoogle Scholar
  20. 20.
    Streshinsky M, Ding R, Liu Y, et al. The road to affordable, large-scale silicon photonics. Opt Photonic News, 2013, 24: 32CrossRefGoogle Scholar
  21. 21.
    Dumon P, Bogaerts W, Wiaux V, et al. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonic Technol Lett, 2004, 16: 1328–1330CrossRefGoogle Scholar
  22. 22.
    Selvaraja S K, Jaenen P, Bogaerts W, et al. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J Lightwave Technol, 2009, 27: 4076–4083CrossRefGoogle Scholar
  23. 23.
    Bogaerts W, Selvaraja S K, Dumon P, et al. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J Sel Top Quant Electron, 2010, 16: 33–44CrossRefGoogle Scholar
  24. 24.
    Bogaerts W, Taillaert D, Dumon P, et al. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt Express, 2007, 15: 1567–1578CrossRefGoogle Scholar
  25. 25.
    Pathak S, van Thourhout D, Bogaerts W. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Opt Lett, 2013, 38: 2961–2964CrossRefGoogle Scholar
  26. 26.
    Pathak S, Vanslembrouck M, Dumon P, et al. Effect of mask discretization on performance of silicon arrayed waveguide gratings. IEEE Photonic Technol Lett, 2014, 26: 718–721CrossRefGoogle Scholar
  27. 27.
    Pathak S, Dumon P, van Thourhout D, et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonic J, 2014, 6: 1–9CrossRefGoogle Scholar
  28. 28.
    Wang J, Chen S T, Dai D X. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993–6996CrossRefGoogle Scholar
  29. 29.
    Bogaerts W, de Heyn P, van Vaerenbergh T, et al. Silicon microring resonators. Laser Photonic Rev, 2012, 6: 47–73CrossRefGoogle Scholar
  30. 30.
    Dong P, Qian W, Liang H, et al. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt Express, 2010, 18: 9852–9858CrossRefGoogle Scholar
  31. 31.
    Dong P, Feng N N, Feng D Z, et al. GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt Express, 2010, 18: 23784–23789CrossRefGoogle Scholar
  32. 32.
    Little B E, Chu S T, Hryniewicz J V, et al. Filter synthesis for periodically coupled microring resonators. Opt Lett, 2000, 25: 344–346CrossRefGoogle Scholar
  33. 33.
    Grover R, Van V, Ibrahim T A, et al. Parallel-cascaded semiconductor microring resonators for high-order and wide- FSR filters. J Lightwave Technol, 2002, 20: 900–905CrossRefGoogle Scholar
  34. 34.
    Tobing L Y M, Dumon P, Baets R, et al. Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays. Opt Lett, 2008, 33: 2512–2514CrossRefGoogle Scholar
  35. 35.
    Dahlem M S, Holzwarth C W, Khilo A, et al. Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems. Opt Express, 2011, 19: 306–316CrossRefGoogle Scholar
  36. 36.
    Luo X S, Song J F, Feng S Q, et al. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects. IEEE Photonic Technol Lett, 2012, 24: 821–823CrossRefGoogle Scholar
  37. 37.
    Tan Y, Chen S T, Dai D X. Polarization-selective microring resonators. Opt Express, 2017, 25: 4106–4119CrossRefGoogle Scholar
  38. 38.
    Xia F, Rooks M, Sekaric L, et al. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt Express, 2007, 15: 11934–11941CrossRefGoogle Scholar
  39. 39.
    Chen P X, Chen S T, Guan X W, et al. High-order microring resonators with bent couplers for a box-like filter response. Opt Lett, 2014, 39: 6304–6307CrossRefGoogle Scholar
  40. 40.
    Dong P. Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J Sel Top Quant Electron, 2016, 22: 370–378CrossRefGoogle Scholar
  41. 41.
    Liang T K, Tsang H K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photonic Technol Lett, 2005, 17: 393–395CrossRefGoogle Scholar
  42. 42.
    Pfau T, Peveling R, Hauden J, et al. Coherent digital polarization diversity receiver for real-time polarizationmultiplexed QPSK transmission at 2.8 Gb/s. IEEE Photonic Technol Lett, 2007, 19: 1988–1990CrossRefGoogle Scholar
  43. 43.
    Wang Z C, Dai D X. Ultrasmall Si-nanowire-based polarization rotator. J Opt Soc Am B, 2008, 25: 747–753CrossRefGoogle Scholar
  44. 44.
    Aamer M, Gutierrez A M, Brimont A, et al. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photonic Technol Lett, 2012, 24: 2031–2034CrossRefGoogle Scholar
  45. 45.
    Fukuda H, Yamada K, Tsuchizawa T, et al. Silicon photonic circuit with polarization diversity. Opt Express, 2008, 16: 4872–4880CrossRefGoogle Scholar
  46. 46.
    Dai D X, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express, 2011, 19: 18614–18620CrossRefGoogle Scholar
  47. 47.
    Wang J, Liang D, Tang Y B, et al. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Opt Lett, 2013, 38: 4–6CrossRefGoogle Scholar
  48. 48.
    Dai D X. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. J Lightwave Technol, 2012, 30: 3281–3287CrossRefGoogle Scholar
  49. 49.
    Lu Z Q, Wang Y, Zhang F, et al. Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers. Opt Express, 2015, 23: 29413–29422CrossRefGoogle Scholar
  50. 50.
    Dai D X, Wu H. Realization of a compact polarization splitter-rotator on silicon. Opt Lett, 2016, 41: 2346–2349CrossRefGoogle Scholar
  51. 51.
    Xu Y, Xiao J B. Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers. Opt Lett, 2016, 41: 773–776CrossRefGoogle Scholar
  52. 52.
    Hsu C W, Chang T K, Chen J Y, et al. 813 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler. Appl Opt, 2016, 55: 3313–3318CrossRefGoogle Scholar
  53. 53.
    Wu H, Tan Y, Dai D X. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt Express, 2017, 25: 6069–6075CrossRefGoogle Scholar
  54. 54.
    Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol, 2012, 30: 2421–2426CrossRefGoogle Scholar
  55. 55.
    Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y-junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38: 1854–1856CrossRefGoogle Scholar
  56. 56.
    Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Appl Opt, 2012, 51: 2778–2783CrossRefGoogle Scholar
  57. 57.
    Chen W W, Wang P J, Yang J Y. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express, 2013, 21: 25113–25119CrossRefGoogle Scholar
  58. 58.
    Frellsen L F, Ding Y, Sigmund O, et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt Express, 2016, 24: 16866–16873CrossRefGoogle Scholar
  59. 59.
    Xing J J, Li Z Y, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38: 3468–3470CrossRefGoogle Scholar
  60. 60.
    Sun C L, Yu Y, Chen G Y, et al. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt Lett, 2016, 41: 5511–5514CrossRefGoogle Scholar
  61. 61.
    Love J D, Vance R W C, Joblin A. Asymmetric, adiabatic multipronged planar splitters. Opt Quant Electron, 1996, 28: 353–369CrossRefGoogle Scholar
  62. 62.
    Dai D X, Wang S P. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front Optoelectron, 2016, 9: 450–465CrossRefGoogle Scholar
  63. 63.
    Dai D X, Wang J. Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects. IEEE Photonic Soc News, 2014, 28: 8–14Google Scholar
  64. 64.
    Guo D F, Chu T. Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity. Opt Express, 2017, 25: 9160–9170CrossRefGoogle Scholar
  65. 65.
    Pan T H, Tseng S Y. Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity. Opt Express, 2015, 23: 10405–10412CrossRefGoogle Scholar
  66. 66.
    Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express, 2005, 13: 9381–9387CrossRefGoogle Scholar
  67. 67.
    Ding Y H, Xu J, Da R F, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21: 10376–10382CrossRefGoogle Scholar
  68. 68.
    Qiu H Y, Yu H, Hu T, et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express, 2013, 21: 17904–17911CrossRefGoogle Scholar
  69. 69.
    Chen S T, Shi Y C, He S L, et al. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-oninsulator nanowires for PDM-WDM systems. Opt Express, 2015, 23: 12840–12849CrossRefGoogle Scholar
  70. 70.
    Tan Y, Wu H, Dai D X. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing. J Lightwave Technol, 2018, 36: 2051–2058CrossRefGoogle Scholar
  71. 71.
    Guo T, Zhang M, Yin Y L, et al. A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators. IEEE Photonic Technol Lett, 2017, 29: 419–422CrossRefGoogle Scholar
  72. 72.
    Lee H S, Kiravittaya S, Kumar S, et al. Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation. Appl Phys Lett, 2009, 95: 191109CrossRefGoogle Scholar
  73. 73.
    Schrauwen J, van Thourhout D, Baets R. Trimming of silicon ring resonator by electron beam induced compaction and strain. Opt Express, 2008, 16: 3738–3743CrossRefGoogle Scholar
  74. 74.
    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photonic, 2013, 7: 354–362CrossRefGoogle Scholar
  75. 75.
    van Uden R G H, Correa R A, Lopez E A, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonic, 2014, 8: 865–870CrossRefGoogle Scholar
  76. 76.
    Zhao N B, Li X Y, Li G F, et al. Capacity limits of spatially multiplexed free-space communication. Nat Photonic, 2015, 9: 822–826CrossRefGoogle Scholar
  77. 77.
    Gabrielli L H, Liu D, Johnson S G, et al. On-chip transformation optics for multimode waveguide bends. Nat Commun, 2012, 3: 1217CrossRefGoogle Scholar
  78. 78.
    Dai D X, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23: 28376–28388CrossRefGoogle Scholar
  79. 79.
    Driscoll J B, Chen C P, Grote R R, et al. A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel. Opt Express, 2014, 22: 18543CrossRefGoogle Scholar
  80. 80.
    Han L S, Liang S, Xu J J, et al. Simultaneous wavelength-and mode-division (de)multiplexing for high-capacity on-chip data transmission link. IEEE Photonic J, 2016, 8: 1–10Google Scholar
  81. 81.
    Ji K, Chen H M. A hybrid multiplexer for wavelength/mode-division based on photonic crystals. Proc SPIE, 2017, 244: 102440Google Scholar
  82. 82.
    Tan Y, Wu H, Wang S P, et al. Silicon-based hybrid demultiplexer for wavelength-and mode-division multiplexing. Opt Lett, 2018, 43: 1962–1965CrossRefGoogle Scholar
  83. 83.
    Wang J, Chen S T, Dai D X. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993–6996CrossRefGoogle Scholar
  84. 84.
    Dai D X, Wang J, Chen S T, et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing. Laser Photonic Rev, 2015, 9: 339–344CrossRefGoogle Scholar
  85. 85.
    Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 3069CrossRefGoogle Scholar
  86. 86.
    Yang Y D, Li Y, Huang Y Z, et al. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt Express, 2014, 22: 22172–22183CrossRefGoogle Scholar
  87. 87.
    Wang S P, Wu H, Tsang H K, et al. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt Lett, 2016, 41: 5298–5301CrossRefGoogle Scholar
  88. 88.
    Wang S P, Feng X L, Gao S M, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt Lett, 2017, 42: 2802–2805CrossRefGoogle Scholar
  89. 89.
    Wang S P, Wu H, Zhang M, et al. A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon. IEEE Photonic Technol Lett, 2018, 30: 1194–1197CrossRefGoogle Scholar
  90. 90.
    Dai D X, Wang J, Shi Y C. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38: 1422–1424CrossRefGoogle Scholar
  91. 91.
    Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser Photonic Rev, 2014, 8: 18–22CrossRefGoogle Scholar
  92. 92.
    Wang J, Chen P X, Chen S T, et al. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt Express, 2014, 22: 12799–12807CrossRefGoogle Scholar
  93. 93.
    Soldano L B, Pennings E C M. Optical multi-mode interference devices based on self-imaging: principles and applications. J Lightwave Technol, 1995, 13: 615–627CrossRefGoogle Scholar
  94. 94.
    Chen S T, Shi Y C, He S L, et al. Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photonic Technol Lett, 2016, 28: 1874–1877CrossRefGoogle Scholar
  95. 95.
    Dai D X, Li C L, Wang S P, et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonic Rev, 2017, 12: 1700109CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chenlei Li
    • 1
  • Hao Wu
    • 1
  • Ying Tan
    • 1
  • Shipeng Wang
    • 1
  • Daoxin Dai
    • 1
    Email author
  1. 1.Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations