Silicon chip-scale space-division multiplexing: from devices to system

  • Yu Yu
  • Chunlei Sun
  • Xinliang ZhangEmail author


Space-division multiplexing (SDM) technique has attracted increasing attentions recently, because it provides an effective way to increase transmission capacity. With the continuous and exponential increase in data demands, high-density integration of silicon photonic components is of significant interest in terms of link price, performance and power consumption. The multimode/mutlicore devices applied to achieve diverse functionalities are key building blocks to construct a chip-scale SDM system based on a silicon on insulator (SOI) platform. This study reviews the recent progress of multimode/multicore devices, which enable coupling, multiplexing/demultiplexing, transmitting switching, as well as modulation and detection. Based on these devices, a complete on-chip SDM system is constructed and discussed.


integrated optics devices space-division multiplexing optical switching devices 



This work was supported by National Natural Science Foundation of China (Grant Nos. 61275072, 61475050, 61775073), New Century Excellent Talent Project in Ministry of Education of China (Grant No. NCET-13-0240), and Director fund of WNLO and Nature Science Foundation of Hubei Province, China (Grant No. 2016CFB416).


  1. 1.
    Shacham A, Bergman K, Carloni L P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput, 2008, 57: 1246–1260MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Miller D. Device requirements for optical interconnects to silicon chips. Proc IEEE, 2009, 97: 1166–1185CrossRefGoogle Scholar
  3. 3.
    Nagarajan R, Ziari M, Kato M, et al. Large-scale DWDM photonic integrated circuits. In: Proceedings of IEEE LEOS Annual Meeting Conference, Sydney, 2005CrossRefGoogle Scholar
  4. 4.
    Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol, 2006, 24: 4600–4615CrossRefGoogle Scholar
  5. 5.
    Narasimha A, Analui B, Liang Y, et al. A fully integrated 4×10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology. IEEE J Solid-State Circ, 2007, 42: 2736–2744CrossRefGoogle Scholar
  6. 6.
    Doerr C R, Chen L, Buhl L L, et al. Eight-channel SiO2/Si3N4/Si/Ge CWDM receiver. IEEE Photon Technol Lett, 2011, 23: 1201–1203CrossRefGoogle Scholar
  7. 7.
    Gill D M, Xiong C, Proesel J E, et al. Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters. IEEE Photon Technol Lett, 2016, 28: 1410–1413CrossRefGoogle Scholar
  8. 8.
    Dong P, Lee J, Chen Y K, et al. Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits. J Lightwave Technol, 2016, 34: 79–84CrossRefGoogle Scholar
  9. 9.
    Boeuf F, Cremer S, Temporiti E, et al. Recent progress in silicon photonics R&D and manufacturing on 300 mm wafer platform. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2015Google Scholar
  10. 10.
    Orcutt J, Gill D M, Proesel J E, et al. Monolithic silicon photonics at 25 Gb/s. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, 2016Google Scholar
  11. 11.
    Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt, 1982, 21: 1950–1955CrossRefGoogle Scholar
  12. 12.
    Murshid S H, Grossman B, Narakorn P. Spatial domain multiplexing: a new dimension in fiber optic multiplexing. Opt Laser Tech, 2008, 40: 1030–1036CrossRefGoogle Scholar
  13. 13.
    Li G F. The future of space-division multiplexing and its applications. In: Proceedings of OptoElectronics and Communications Conference held jointly with International Conference on Photonics in Switching (OECC/PS), Kyoto, 2013Google Scholar
  14. 14.
    Sakaguchi J, Puttnam B, Klaus W, et al. 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2012Google Scholar
  15. 15.
    Koshiba M, Saitoh K, Kokubun Y. Heterogeneous multi-core fibers: proposal and design principle. IEICE Electron Express, 2009, 6: 98–103CrossRefGoogle Scholar
  16. 16.
    Ryf R, Randel S, Gnauck A, et al. Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2011Google Scholar
  17. 17.
    Murshid S, Alanzi S, Hridoy A, et al. Combining spatial domain multiplexing and orbital angular momentum of photon-based multiplexing to increase the bandwidth of optical fiber communication systems. Opt Eng, 2016, 55: 066124CrossRefGoogle Scholar
  18. 18.
    Murshid S, Iqbal J. Spatial combination of optical channels in a multimode waveguide. In: Proceedings of Frontiers in Optics, Rochester, 2010CrossRefGoogle Scholar
  19. 19.
    Hsu R C J, Tarighat A, Shah A, et al. Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links. IEEE Commun Lett, 2006, 10: 195–197CrossRefGoogle Scholar
  20. 20.
    Tkach R W. Scaling optical communications for the next decade and beyond. Bell Labs Tech J, 2010, 14: 3–9CrossRefGoogle Scholar
  21. 21.
    Lai Y X, Yu Y, Fu S N, et al. Efficient spot size converter for higher-order mode fiber-chip coupling. Opt Lett, 2017, 42: 3702–3705CrossRefGoogle Scholar
  22. 22.
    Wohlfeil B, Rademacher G, Stamatiadis C, et al. A two-dimensional fiber grating coupler on SOI for mode division multiplexing. IEEE Photon Technol Lett, 2016, 28: 1241–1244CrossRefGoogle Scholar
  23. 23.
    Yu Y, Ye M Y, Fu S N. On-chip polarization controlled mode converter with capability of WDM operation. IEEE Photon Technol Lett, 2015, 27: 1957–1960CrossRefGoogle Scholar
  24. 24.
    Dai D X, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23: 28376–28388CrossRefGoogle Scholar
  25. 25.
    Koonen A M L, Chen H S, van den Boom H P A, et al. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photon Technol Lett, 2012, 24: 1961–1964CrossRefGoogle Scholar
  26. 26.
    Ding Y H, Ou H Y, Xu J, et al. Silicon photonic integrated circuit mode multiplexer. IEEE Photon Technol Lett, 2013, 25: 648–651CrossRefGoogle Scholar
  27. 27.
    Ding Y H, Yvind K. Efficient silicon PIC mode multiplexer using grating coupler array with aluminum mirror for few-mode fiber. In: Proceedings of Lasers and Electro-Optics (CLEO), San Jose, 2015CrossRefGoogle Scholar
  28. 28.
    Wu Y F, Chiang K S. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches. Opt Lett, 2017, 42: 407–410CrossRefGoogle Scholar
  29. 29.
    Riesen N, Gross S, Love J D, et al. Femtosecond direct-written integrated mode couplers. Opt Express, 2014, 22: 29855–29861CrossRefGoogle Scholar
  30. 30.
    Dong J L, Chiang K S, Jin W. Mode multiplexer based on integrated horizontal and vertical polymer waveguide couplers. Opt Lett, 2015, 40: 3125–3128CrossRefGoogle Scholar
  31. 31.
    Ding Y H, Ye F H, Peucheret C, et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express, 2015, 23: 3292–3298CrossRefGoogle Scholar
  32. 32.
    Riesen N, Gross S, Love J D, et al. Monolithic mode-selective few-mode multicore fiber multiplexers. Sci Rep, 2017, 7: 6971CrossRefGoogle Scholar
  33. 33.
    van Uden R G H, Correa R A, Lopez E A, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photon, 2014, 8: 865–870CrossRefGoogle Scholar
  34. 34.
    Qiu J F, Zhang D L, Tian Y, et al. Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter. IEEE Photonics J, 2015, 7: 1–8CrossRefGoogle Scholar
  35. 35.
    Li Y M, Li C, Li C B, et al. Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides. Opt Express, 2014, 22: 5781–5786CrossRefGoogle Scholar
  36. 36.
    Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol, 2012, 30: 2421–2426CrossRefGoogle Scholar
  37. 37.
    Greenberg M, Orenstein M. Simultaneous dual mode add/drop multiplexers for optical interconnects buses. Opt Commun, 2006, 266: 527–531CrossRefGoogle Scholar
  38. 38.
    Dai D X, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38: 1422–1424CrossRefGoogle Scholar
  39. 39.
    Ding Y H, Xu J, Da Ros F, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21: 10376–10382CrossRefGoogle Scholar
  40. 40.
    Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 3069CrossRefGoogle Scholar
  41. 41.
    Dorin B A, Ye W N. Two-mode division multiplexing in a silicon-on-insulator ring resonator. Opt Express, 2014, 22: 4547–4558CrossRefGoogle Scholar
  42. 42.
    Yang Y D, Li Y, Huang Y Z, et al. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt Express, 2014, 22: 22172–22183CrossRefGoogle Scholar
  43. 43.
    Qiu H Y, Yu H, Hu T, et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express, 2013, 21: 17904–17911CrossRefGoogle Scholar
  44. 44.
    Davis J A, Grieco A, Souza M C, et al. Hybrid multimode resonators based on grating-assisted counter-directional couplers. Opt Express, 2017, 25: 16484–16490CrossRefGoogle Scholar
  45. 45.
    Xing J J, Li Z Y, Yu Y D, et al. Design of polarization-independent adiabatic splitters fabricated on silicon-oninsulator substrates. Opt Express, 2013, 21: 26729–26734CrossRefGoogle Scholar
  46. 46.
    Xing J J, Xiong K, Xu H, et al. Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling. Opt Lett, 2013, 38: 2221–2223CrossRefGoogle Scholar
  47. 47.
    Xing J J, Li Z Y, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38: 3468–3470CrossRefGoogle Scholar
  48. 48.
    Wang J, Xuan Y, Qi M H, et al. Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers. Opt Lett, 2015, 40: 1956–1959CrossRefGoogle Scholar
  49. 49.
    Sun C L, Yu Y, Ye M Y, et al. An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers. Sci Rep, 2016, 6: 38494CrossRefGoogle Scholar
  50. 50.
    Wang J, Deng S P, Wong C Y, et al. Monolithically integrated silicon hybrid demultiplexer with improved loss and crosstalk suppression. In: Proceedings of European Conference on Optical Communication, Gothenburg, 2017CrossRefGoogle Scholar
  51. 51.
    Sun Y, Xiong Y, Ye W N. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt Lett, 2016, 41: 3743–3746CrossRefGoogle Scholar
  52. 52.
    Li C L, Dai D X. Low-loss and low-crosstalk multi-channel mode (de)multiplexer with ultrathin silicon waveguides. Opt Lett, 2017, 42: 2370–2373CrossRefGoogle Scholar
  53. 53.
    Sun C L, Yu Y, Chen G Y, et al. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt Lett, 2016, 41: 5511–5514CrossRefGoogle Scholar
  54. 54.
    Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34: 280–282CrossRefGoogle Scholar
  55. 55.
    Yariv A, Sun X K. Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis. Opt Express, 2007, 15: 9147–9151CrossRefGoogle Scholar
  56. 56.
    Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y-junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38: 1854–1856CrossRefGoogle Scholar
  57. 57.
    Chen W W, Wang P J, Yang T J, et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y-junctions. Opt Lett, 2016, 41: 2851–2854CrossRefGoogle Scholar
  58. 58.
    Chen W W, Wang P J, Yang J Y. Optical mode interleaver based on the asymmetric multimode Y-junction. IEEE Photon Technol Lett, 2014, 26: 2043–2046CrossRefGoogle Scholar
  59. 59.
    Chen W W, Wang P J, Yang J Y. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express, 2013, 21: 25113–25119CrossRefGoogle Scholar
  60. 60.
    Pan T H, Tseng S Y. Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity. Opt Express, 2015, 23: 10405–10412CrossRefGoogle Scholar
  61. 61.
    Guo D F, Chu T. Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity. Opt Express, 2017, 25: 9160–9170CrossRefGoogle Scholar
  62. 62.
    Chung H C, Lee K S, Tseng S Y. Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics. Opt Express, 2017, 25: 13626–13634CrossRefGoogle Scholar
  63. 63.
    Chien K H, Yeih C S, Tseng S Y. Mode conversion/splitting in multimode waveguides based on invariant engineering. J Lightwave Technol, 2013, 31: 3387–3394CrossRefGoogle Scholar
  64. 64.
    Mart´ınez-Garaot S, Tseng S Y, Muga J G. Compact and high conversion efficiency mode-sorting asymmetric Yjunction using shortcuts to adiabaticity. Opt Lett, 2014, 39: 2306–2309CrossRefGoogle Scholar
  65. 65.
    Tseng S Y, Wen R D, Chiu Y F, et al. Short and robust directional couplers designed by shortcuts to adiabaticity. Opt Express, 2014, 22: 18849–18859CrossRefGoogle Scholar
  66. 66.
    Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser Photonic Rev, 2014, 8: 18–22CrossRefGoogle Scholar
  67. 67.
    Wang J, Chen S T, Dai D X. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993–6996CrossRefGoogle Scholar
  68. 68.
    Dai D X, Li C L, Wang S P, et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonic Rev, 2018, 12: 1700109CrossRefGoogle Scholar
  69. 69.
    Dai D X, Wang J, Chen S T, et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing. Laser Photonic Rev, 2015, 9: 339–344CrossRefGoogle Scholar
  70. 70.
    Chen K X, Wang S Y, Chen S T, et al. Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array. Opt Lett, 2015, 40: 4655–4658CrossRefGoogle Scholar
  71. 71.
    Song W, Gatdula R, Abbaslou S, et al. High-density waveguide superlattices with low crosstalk. Nat Commun, 2015, 6: 7027CrossRefGoogle Scholar
  72. 72.
    Yang N, Yang H S, Hu H R, et al. Theory of high-density low-cross-talk waveguide superlattices. Photon Res, 2016, 4: 233–239CrossRefGoogle Scholar
  73. 73.
    Cerutti I, Andriolli N, Velha P. Engineering of closely packed silicon-on-isolator waveguide arrays for mode division multiplexing applications. J Opt Soc Am B, 2017, 34: 497–506CrossRefGoogle Scholar
  74. 74.
    Tan K, Huang Y, Lo G Q, et al. Compact highly-efficient polarization splitter and rotator based on 90◦ bends. Opt Express, 2016, 24: 14506–14512CrossRefGoogle Scholar
  75. 75.
    Dai D X, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express, 2011, 19: 18614–18620CrossRefGoogle Scholar
  76. 76.
    Wu H, Tan Y, Dai D X. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt Express, 2017, 25: 6069–6075CrossRefGoogle Scholar
  77. 77.
    Zhang Y, He Y, Jiang X H, et al. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photonics, 2016, 1: 091304CrossRefGoogle Scholar
  78. 78.
    Xu H N, Shi Y C. Ultra-broadband 16-channel mode division (de)multiplexer utilizing densely packed bent waveguide arrays. Opt Lett, 2016, 41: 4815–4818CrossRefGoogle Scholar
  79. 79.
    Xu H N, Shi Y C. Broadband nine-channel mode-division (de)multiplexer based on densely packed multimode waveguide arrays. J Lightwave Technol, 2017, 35: 4949–4953CrossRefGoogle Scholar
  80. 80.
    Xu H N, Shi Y C. Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters. Opt Lett, 2016, 41: 5047–5050CrossRefGoogle Scholar
  81. 81.
    Luo Y C, Yu Y, Ye M Y, et al. Integrated dual-mode 3 dB power coupler based on tapered directional coupler. Sci Rep, 2016, 6: 23516CrossRefGoogle Scholar
  82. 82.
    Atsumi Y, Kang J H, Hayashi Y, et al. Analysis of higher-order mode suppressed transmission in low-loss silicon multimode waveguides on silicon-on-insulator substrates. Jpn J Appl Phys, 2014, 53: 078002CrossRefGoogle Scholar
  83. 83.
    Ahmmed K T, Chan H P, Li B. Broadband high-order mode pass filter based on mode conversion. Opt Lett, 2017, 42: 3686–3689CrossRefGoogle Scholar
  84. 84.
    Guan X W, Ding Y H, Frandsen L H. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics. Opt Lett, 2015, 40: 3893–3896CrossRefGoogle Scholar
  85. 85.
    R´ıos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photon, 2015, 9: 725–732CrossRefGoogle Scholar
  86. 86.
    Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus. Nat Commun, 2017, 8: 1256CrossRefGoogle Scholar
  87. 87.
    Miller K J, Hallman K A, Haglund R F, et al. Silicon waveguide optical switch with embedded phase change material. Opt Express, 2017, 25: 26527–26536CrossRefGoogle Scholar
  88. 88.
    Huang T Y, Pan Z P, Zhang M M, et al. Design of reconfigurable on-chip mode filters based on phase transition in vanadium dioxide. Appl Phys Express, 2016, 9: 112201CrossRefGoogle Scholar
  89. 89.
    Xu Q F, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-μm radius. Opt Express, 2008, 16: 4309–4315CrossRefGoogle Scholar
  90. 90.
    Gabrielli L H, Liu D, Johnson S G, et al. On-chip transformation optics for multimode waveguide bends. Nat Commun, 2012, 3: 1217CrossRefGoogle Scholar
  91. 91.
    Dai D X. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects. Opt Express, 2014, 22: 27524–27534CrossRefGoogle Scholar
  92. 92.
    Sun C L, Yu Y, Chen G Y, et al. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk. Opt Lett, 2017, 42: 3004–3007CrossRefGoogle Scholar
  93. 93.
    Callewaert F, Aydin K. Inverse-designed all-dielectric waveguide bend. In: Proceedings the 19th Annual Conference for Novel Optical Systems Design and Optimization, San Diego, 2016Google Scholar
  94. 94.
    Piggott A Y, Lu J, Lagoudakis K G, et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photon, 2015, 9: 374–377CrossRefGoogle Scholar
  95. 95.
    Shen B, Wang P, Polson R C, et al. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint. Nat Photon, 2015, 9: 378–382CrossRefGoogle Scholar
  96. 96.
    Mak J C C, Sideris C, Jeong J, et al. Binary particle swarm optimized 2×2 power splitters in a standard foundry silicon photonic platform. Opt Lett, 2016, 41: 3868–3871CrossRefGoogle Scholar
  97. 97.
    Majumder A, Shen B, Polson R, et al. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt Express, 2017, 25: 19721–19731CrossRefGoogle Scholar
  98. 98.
    Xu K, Liu L, Wen X, et al. Integrated photonic power divider with arbitrary power ratios. Opt Lett, 2017, 42: 855–858CrossRefGoogle Scholar
  99. 99.
    Piggott A Y, Petykiewicz J, Su L, et al. Fabrication-constrained nanophotonic inverse design. Sci Rep, 2017, 7: 1786CrossRefGoogle Scholar
  100. 100.
    Liu V, Fan S H. Compact bends for multi-mode photonic crystal waveguides with high transmission and suppressed modal crosstalk. Opt Express, 2013, 21: 8069–8075CrossRefGoogle Scholar
  101. 101.
    Chen H, Poon A W. Low-loss multimode-interference-based crossings for silicon wire waveguides. IEEE Photon Technol Lett, 2006, 18: 2260–2262CrossRefGoogle Scholar
  102. 102.
    Bogaerts W, Dumon P, Thourhout D V, et al. Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt Lett, 2007, 32: 2801–2803CrossRefGoogle Scholar
  103. 103.
    Kim S H, Cong G W, Kawashima H, et al. Low-crosstalk waveguide crossing based on 1×1 MMI structure of silicon-wire waveguide. In: Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Kyoto, 2013Google Scholar
  104. 104.
    Zhang Y, Hosseini A, Xu X C, et al. Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers. Opt Lett, 2013, 38: 3608–3611CrossRefGoogle Scholar
  105. 105.
    Liu Y Y, Shainline J M, Zeng X G, et al. Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. Opt Lett, 2014, 39: 335–338CrossRefGoogle Scholar
  106. 106.
    Xu H N, Shi Y C. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers. Opt Lett, 2016, 41: 5381–5384CrossRefGoogle Scholar
  107. 107.
    Sun C L, Yu Y, Zhang X L. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt Lett, 2017, 42: 4913–4916CrossRefGoogle Scholar
  108. 108.
    van Campenhout J, Green W M, Assefa S, et al. Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt Express, 2009, 17: 24020–24029CrossRefGoogle Scholar
  109. 109.
    Dong P, Liao S R, Liang H, et al. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt Express, 2010, 18: 25225–25231CrossRefGoogle Scholar
  110. 110.
    Yang M, Green W M J, Assefa S, et al. Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks. Opt Express, 2011, 19: 47–54CrossRefGoogle Scholar
  111. 111.
    Han S Y, Seok T J, Quack N, et al. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2: 370–375CrossRefGoogle Scholar
  112. 112.
    Murray K, Lu Z Q, Jayatilleka H, et al. Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt Express, 2015, 23: 19575–19585CrossRefGoogle Scholar
  113. 113.
    Chen S T, Shi Y C, He S L, et al. Low-loss and broadband 2×2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt Lett, 2016, 41: 836–839CrossRefGoogle Scholar
  114. 114.
    Seok T J, Quack N, Han S, et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3: 64–70CrossRefGoogle Scholar
  115. 115.
    Wilkes C M, Qiang X, Wang J, et al. 60 dB high-extinction auto-configured Mach-Zehnder interferometer. Opt Lett, 2016, 41: 5318–5321CrossRefGoogle Scholar
  116. 116.
    Nikolova D, Calhoun D M, Liu Y, et al. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsyst Nanoeng, 2017, 3: 16071CrossRefGoogle Scholar
  117. 117.
    Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core. Nat Commun, 2017, 8: 636CrossRefGoogle Scholar
  118. 118.
    Seok T J, Kopp V I, Neugroschl D, et al. High density optical packaging of high radix silicon photonic switches. In: Proceedings of Optical Fiber Communication Conference and Exhibition (OFC), Los Angeles, 2017CrossRefGoogle Scholar
  119. 119.
    Sun C L, Yu Y, Chen G Y, et al. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt Lett, 2016, 41: 3257–3260CrossRefGoogle Scholar
  120. 120.
    Huang Q D, Jin W, Chiang K S. Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer. Opt Lett, 2017, 42: 4877–4880CrossRefGoogle Scholar
  121. 121.
    Ding Y H, Kamchevska V, Dalgaard K, et al. Reconfigurable SDM switching using novel silicon photonic integrated circuit. Sci Rep, 2016, 6: 39058CrossRefGoogle Scholar
  122. 122.
    Wu X R, Xu K, Dai D X, et al. Mode division multiplexing switch for on-chip optical interconnects. In: Proceedings of OptoElectronics and Communications Conference (OECC), Niigata, 2016Google Scholar
  123. 123.
    Stern B, Zhu X L, Chen C P, et al. On-chip mode-division multiplexing switch. Optica, 2015, 2: 530–535CrossRefGoogle Scholar
  124. 124.
    Zhang Y, Zhu Q M, He Y, et al. Silicon 1×2 mode-and polarization-selective switch. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2017CrossRefGoogle Scholar
  125. 125.
    Jia H, Zhou T, Zhang L, et al. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt Express, 2017, 25: 20698–20707CrossRefGoogle Scholar
  126. 126.
    Chan W Y, Chan H P. Reconfigurable two-mode mux/demux device. Opt Express, 2014, 22: 9282–9290CrossRefGoogle Scholar
  127. 127.
    Sun C L, Yu Y, Chen G Y, et al. On-chip switch for reconfigurable mode-multiplexing optical network. Opt Express, 2016, 24: 21722–21728CrossRefGoogle Scholar
  128. 128.
    Xiong Y L, Priti R B, Liboiron L O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4: 1098–1102CrossRefGoogle Scholar
  129. 129.
    Chen S T, Shi Y C, He S L, et al. Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photon Technol Lett, 2016, 28: 1874–1877CrossRefGoogle Scholar
  130. 130.
    Wang S P, Wu H, Tsang H K, et al. Monolithically integrated reconfigurable add-drop multiplexer for mode-divisionmultiplexing systems. Opt Lett, 2016, 41: 5298–5301CrossRefGoogle Scholar
  131. 131.
    Wang S P, Feng X L, Gao S M, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/modedivision-multiplexing systems. Opt Lett, 2017, 42: 2802–2805CrossRefGoogle Scholar
  132. 132.
    Xiao X, Xu H, Li X Y, et al. 60 Gbit/s silicon modulators with enhanced electro-optical efficiency. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC), Anaheim, 2013Google Scholar
  133. 133.
    Timurdogan E, Sorace-Agaskar C M, Sun J, et al. An ultralow power athermal silicon modulator. Nat Commun, 2014, 5: 4008CrossRefGoogle Scholar
  134. 134.
    Xiong C, Gill D M, Proesel J E, et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica, 2016, 3: 1060–1065CrossRefGoogle Scholar
  135. 135.
    Dubé-Demers R, LaRochelle S, Shi W. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 2016, 3: 622–627CrossRefGoogle Scholar
  136. 136.
    Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20: 1096–1101CrossRefGoogle Scholar
  137. 137.
    DeRose C T, Trotter D C, Zortman W A, et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 2011, 19: 24897–24904CrossRefGoogle Scholar
  138. 138.
    Chen G Y, Yu Y, Deng S P, et al. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt Express, 2015, 23: 25700–25706CrossRefGoogle Scholar
  139. 139.
    Chen G Y, Yu Y, Xiao X, et al. High speed and high power polarization insensitive germanium photodetector with lumped structure. Opt Express, 2016, 24: 10030–10039CrossRefGoogle Scholar
  140. 140.
    Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors. Nat Photon, 2010, 4: 527–534CrossRefGoogle Scholar
  141. 141.
    Logan D F, Velha P, Sorel M, et al. Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 μm. IEEE Photon Technol Lett, 2010, 22: 1530–1532CrossRefGoogle Scholar
  142. 142.
    Preston K, Lee Y H D, Zhang M, et al. Waveguide-integrated telecom-wavelength photodiode in deposited silicon. Opt Lett, 2011, 36: 52–54CrossRefGoogle Scholar
  143. 143.
    Mehta K K, Orcutt J S, Shainline J M, et al. Polycrystalline silicon ring resonator photodiodes in a bulk comple mentary metal-oxide-semiconductor process. Opt Lett, 2014, 39: 1061–1064CrossRefGoogle Scholar
  144. 144.
    Alloatti L, Ram R J. Resonance-enhanced waveguide-coupled silicon-germanium detector. Appl Phys Lett, 2016, 108: 071105CrossRefGoogle Scholar
  145. 145.
    Brouckaert J, Roelkens G, Van Thourhout D, et al. Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs. J Lightwave Technol, 2007, 25: 1053–1060CrossRefGoogle Scholar
  146. 146.
    Park H, Fang A W, Jones R, et al. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt Express, 2007, 15: 6044–6052CrossRefGoogle Scholar
  147. 147.
    Ng D K T, Wang Q, Pu J, et al. Demonstration of heterogeneous III-V/Si integration with a compact optical vertical interconnect access. Opt Lett, 2013, 38: 5353–5356CrossRefGoogle Scholar
  148. 148.
    Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotech, 2014, 9: 780–793CrossRefGoogle Scholar
  149. 149.
    Bie Y Q, Grosso G, Heuck M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat Nanotech, 2017, 12: 1124–1129CrossRefGoogle Scholar
  150. 150.
    Dong P, Xie C J, Buhl L L. Monolithic polarization diversity coherent receiver based on 120-degree optical hybrids on silicon. Opt Express, 2014, 22: 2119–2125CrossRefGoogle Scholar
  151. 151.
    Doerr C R, Winzer P J, Chen Y K, et al. Monolithic polarization and phase diversity coherent receiver in silicon. J Lightwave Technol, 2010, 28: 520–525CrossRefGoogle Scholar
  152. 152.
    Ding R, Liu Y, Li Q, et al. A compact low-power 320-Gb/s WDM transmitter based on silicon microrings. IEEE Photonic J, 2014, 6: 1–8CrossRefGoogle Scholar
  153. 153.
    Gill D M, Proesel J E, Xiong C, et al. Demonstration of a high extinction ratio monolithic CMOS integrated nanophotonic transmitter and 16 Gb/s optical link. IEEE J Sel Top Quant Electron, 2015, 21: 212–222CrossRefGoogle Scholar
  154. 154.
    Chen K X, Huang Q S, Zhang J H, et al. Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects. IEEE Photonic J, 2016, 8: 1–10Google Scholar
  155. 155.
    Zhang C, Zhang S J, Peters J D, et al. 8×8×40 Gbps fully integrated silicon photonic network on chip. Optica, 2016, 3: 785–786CrossRefGoogle Scholar
  156. 156.
    Chen G Y, Yu Y, Zhou D, et al. Three modes multiplexed photonic integrated circuit for large capacity optical interconnection. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2017CrossRefGoogle Scholar
  157. 157.
    Chen G Y, Yu Y, Ye M Y, et al. Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit. Opt Express, 2016, 24: 14841–14850CrossRefGoogle Scholar
  158. 158.
    Wu X R, Huang C R, Xu K, et al. 3×104 Gb/s single-interconnect of mode-division multiplexed network with a multicore fiber. J Lightwave Technol, 2018, 36: 318–324CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics and School of Optical and Electrical InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations