Skip to main content
Log in

Variational PCA fusion for Pan-sharpening very high resolution imagery

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The Pan-sharpening approach based on principle component analysis (PCA) is affected by severe spectral distortion. To address this problem, a new pan-sharpening model based on PCA and variational technique is proposed to construct the substitute image of the first principal component (PC1). The energy functional consists of three terms. The first term injects PC1 with the geometric structure of the panchromatic (Pan) image. The second term preserves the spectral pattern of the multi-spectral image in the merged result. And the third term guarantees the smoothness of the functional optimization solution. The fusion result is given by the minimum of the energy functional, which is computed with the gradient descend flow. The experiments on QuickBird and IKONOS datasets validate the effectiveness of the proposed model. Compared with the state-of-the-art pan-sharpening approaches, this model exhibits a better trade-off between improving spatial quality and preserving spectral signature of the MS image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan M M, Alparone L, Chanussot J. Pansharpening quality assessment using the modulation transfer functions of instruments. IEEE Trans Geosci Remote Sens, 2009, 47: 3880–3891

    Article  Google Scholar 

  2. Tu T M, Huang P S, Hung C L, et al. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Trans Geosci Remote Sens Lett, 2004, 1: 309–312

    Article  Google Scholar 

  3. Choi M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Trans Geosci Remote Sens, 2006, 44: 1672–1682

    Article  Google Scholar 

  4. Shah V P, Younan N H, King R L. An efficient Pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans Geosci Remote Sens, 2008, 46: 1323–1335

    Article  Google Scholar 

  5. Aiazzi B, Alparone L, Argenti F, et al. Wavelet and pyramid techniques for multisensor data fusion: A performance comparison varying with scale ratio. In: Proceedings Europto, Image and Signal Processing for Remote Sensing V, 1999, 3871: 251–262

    Article  Google Scholar 

  6. Aiazzi B, Alparone L, Baronti S, et al. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans Geosci Remote Sens, 2002, 40: 2300–2312

    Article  Google Scholar 

  7. Otazu X, González-Audícana M, Fors O, et al. Introduction of sensor spectral response into image fusion methods: Application to wavelet-based methods. IEEE Trans Geosci Remote Sens, 2005, 43: 2376–2385

    Article  Google Scholar 

  8. Alparone L, Wald L, Chanussot J, et al. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Trans Geosci Remote Sens, 2007, 45: 3012–3021

    Article  Google Scholar 

  9. Choi M, Kim R Y, Nam M R, et al. Fusion of multispectral and panchromatic satellite images using the curvelet transform. IEEE Trans Geosci Remote Sens Lett, 2005, 2: 136–140

    Article  Google Scholar 

  10. Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform. Info Fusion, 2007, 8: 143–156

    Article  Google Scholar 

  11. Mahyari A G, Yazdi M. Panchromatic and multispectral image fusion based on maximization of both spectral and spatial similarities. IEEE Trans Geosci Remote Sens, 2011, 49: 1976–1985

    Article  Google Scholar 

  12. Garzelli A, Nencini F. Interband structure modeling for pan-sharpening of very high-resolution multispectral images. Info Fusion, 2005, 6: 213–224

    Article  Google Scholar 

  13. Aiazzi B, Alparone L, Baronti S, et al. MTF-tailored multiscale fusion of high-resolution MS and pan imagery. Photogramm Eng Remote Sens, 2006, 72: 591–596

    Article  Google Scholar 

  14. Garzelli A, Nencini F, Capobianco L. Optimal MMSE Pan sharpening of very high resolution multispectral images. IEEE Trans Geosci Remote Sens, 2008, 46: 228–236

    Article  Google Scholar 

  15. Massip P, Blanc P, Wald L. A method to better account for modulation transfer functions in ARSIS-based pansharpening methods. IEEE Trans Geosci Remote Sens, 2012, 50: 800–808

    Article  Google Scholar 

  16. Yang W, Chen J, Matsushita B, et al. Practical image fusion method based on spectral mixture analysis. Sci China Inf Sci, 2010, 53: 1277–1286

    Article  Google Scholar 

  17. Gonzílez-Audícana M, Saleta J L, Catálan R G, et al. Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IE IEEE Trans Geosci Remote Sens, 2004, 42: 1291–1299

    Article  Google Scholar 

  18. Socolinsky D A, Wolff L B. Multispectral image visualization through first-order fusion. IEEE Trans Image Process, 2002, 11: 923–931

    Article  Google Scholar 

  19. Ballester C, Caselles V, Igual L, et al. A variational model for P+XS image fusion. Int J Comput Vis, 2006, 69: 43–58

    Article  Google Scholar 

  20. Moeller M, Wittman T, Bertozzi A L. A variational approach to hyperspectral image fusion. In: Proc SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, Orlando, Florida, 2009

    Google Scholar 

  21. Shi Z W, An Z Y, Jiang Z G. Hyperspectral image fusion by the similarity measure-based variational method. Opt Eng, 2011, 50: 1–11

    MATH  Google Scholar 

  22. Zhou Z M, Li Y X, Shi H Q, et al. Pan-sharpening: A fast variational fusion approach. Sci China Inf Sci, 2012, 55: 615–625

    Article  MathSciNet  Google Scholar 

  23. Ranchin T, Wald L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation. Photogramm Eng Remote Sens, 2000, 66: 49–61

    Google Scholar 

  24. Ranchin T, Aiazzi B, Alparone L, et al. Image fusion-the ARSIS concept and some successful implementation schemes. ISPRS J Photogram Remote Sens, 2003, 58: 4–18

    Article  Google Scholar 

  25. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell, 1990, 12: 629–639

    Article  Google Scholar 

  26. Wald L. Data fusion: Definitions and architectures. Fusion of Images of Different Spatial Resolutions. Paris: Presses de l’Ecole, MINES ParisTech, 2002

    Google Scholar 

  27. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60: 259–268

    Article  MATH  Google Scholar 

  28. Li H J, Feng X S, Xiang J, et al. New approach for solving the inverse boundary value problem of Laplace’s equation on a circle: Technique renovation of the Grad-Shafranov (GS) reconstruction. J Geophys Res Space Phys, 2013, 118: 2876–2881, doi:10.1002/jgra.50367

    Article  Google Scholar 

  29. Goldstein T, Osher S. The split Bregman method for L1 regularized problems. SIAM J Imaging Sci, 2009, 2: 323–343

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang S, Wang M, Jiao L C. Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis. Info Fusion, 2012, 13: 177–184

    Article  Google Scholar 

  31. Tu T M, Hsu C L, Tu P Y, et al. An adjustable Pan-Sharpening approach for IKONOS/QuickBird/GeoEye-1/WorldView-2 imagery. IEEE J Selected Topics Appl Earth Observ Remote Sens, 2012, 5: 125–134

    Article  Google Scholar 

  32. Garzelli A, Nencini F. Panchromatic sharpening of remote images using a multiscale Kalman filter. Pattern Recogn, 2007, 40: 3568–3577

    Article  MATH  Google Scholar 

  33. Wang Z, Bovik A C. A universal image quality index. IEEE Trans Signal Process Lett, 2002, 9: 81–84

    Article  Google Scholar 

  34. Alparone L, Baronti S, Garzelli A, et al. A global quality measurement of Pan-sharpened multispectral imagery. IEEE Trans Geosci Remote Sens Lett, 2004, 1: 313–317

    Article  Google Scholar 

  35. Alparone L, Aiazzi B, Baronti S, et al. Multispectral and panchromatic data fusion assessment without reference. Photogramm Eng Remote Sens, 2008, 74: 193–200

    Article  Google Scholar 

  36. Choi J, Yu K, Kim Y. A new adaptive component-substitute-based satellite image fusion by using partial replacement. IEEE Trans Geosci Remote Sens, 2011, 49: 295–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZeMing Zhou or YuanXiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Ma, N., Li, Y. et al. Variational PCA fusion for Pan-sharpening very high resolution imagery. Sci. China Inf. Sci. 57, 1–10 (2014). https://doi.org/10.1007/s11432-014-5108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5108-6

Keywords

Navigation