Advertisement

Electromicrobiology and biotechnological applications of the exoelectrogens Geobacter and Shewanella spp.

  • MeiMei Shi
  • YongGuang Jiang
  • Liang ShiEmail author
Review Special Topic: Microbial Electrochemical Technology
  • 6 Downloads

Abstract

Electromicrobiology is a sub-discipline of microbiology that investigates electrical interplay between microorganisms and redox active materials, such as electrodes and solid-phase minerals, and the mechanisms underlying microbial ability to exchange electrons with the redox active materials that are external to the microbial cells. The microorganisms with extracellular electron transfer capability are often referred to as exoelectrogens. Although exoelectrogens were documented in early 1900’s, discovery of the dissimilatory metal-reducing microorganisms Geobacter and Shewanella spp. in late 1980’s marked the beginning of modern electromicrobiology. Since then, thorough and rigorous studies have made Geobacter and Shewanella spp. the two best characterized groups of exoelectrogens. These include identification and characterization of the molecular mechanisms for exchanging electrons with electrodes by Geobacter sulfurreducens and Shewanella oneidensis. In addition, a variety of applications of Geobacter and Shewanella spp. in microbial fuel cells and electrobiosynthesis, such as maintenance of redox balance during fermentations and bioremediations, have also been developed. This review briefly discusses the molecular mechanisms by which G. sulfurreducens and S. oneidensis exchange electrons with electrodes and then focuses on biotechnological applications of Geobacter and Shewanella spp. in microbial fuel cells and electrobiosynthesis as well as the future directions of this research area.

En

electromicrobiology exoelectrogen Geobacter Shewanella microbial fuel cells electrobiosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bond D R, Holmes D E, Tender L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295: 483–485CrossRefGoogle Scholar
  2. 2.
    Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol, 2003, 69: 1548–1555CrossRefGoogle Scholar
  3. 3.
    Bretschger O, Obraztsova A, Sturm C A, et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol, 2007, 73: 7003–7012CrossRefGoogle Scholar
  4. 4.
    Baron D, LaBelle E, Coursolle D, et al. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem, 2009, 284: 28865–28873CrossRefGoogle Scholar
  5. 5.
    Bose A, Gardel E J, Vidoudez C, et al. Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun, 2014, 5: 3391CrossRefGoogle Scholar
  6. 6.
    Ishii T, Kawaichi S, Nakagawa H, et al. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources. Front Microbiol, 2015, 6: 994CrossRefGoogle Scholar
  7. 7.
    Carlson H K, Iavarone A T, Gorur A, et al. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci USA, 2012, 109: 1702–1707CrossRefGoogle Scholar
  8. 8.
    Lohner S T, Deutzmann J S, Logan B E, et al. Hydrogenase-in-dependent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J, 2014, 8: 1673–1681CrossRefGoogle Scholar
  9. 9.
    Lovley D R. Electromicrobiology. Ann Rev Microbiol, 2012, 66: 391–409CrossRefGoogle Scholar
  10. 10.
    Nealson K H, Rowe A R. Electromicrobiology: Realities, grand challenges, goals and predictions. Microb Biotech, 2016, 9: 595–600CrossRefGoogle Scholar
  11. 11.
    Lovley D R, Phillips E J. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol, 1988, 54: 1472–1480Google Scholar
  12. 12.
    Lovley D R, Stolz J F, Nord G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 1987, 330: 252–254CrossRefGoogle Scholar
  13. 13.
    Myers C R, Nealson K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988, 240: 1319–1321CrossRefGoogle Scholar
  14. 14.
    Potter M C. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B-Biol Sci, 1911, 84: 260–276CrossRefGoogle Scholar
  15. 15.
    Cohen B. The bacterial culture as an electrical half cell. J Bacteriol, 1931, 21: 18–19Google Scholar
  16. 16.
    Lovley D R, Phillips E J, Lonergan D J. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol, 1989, 55: 700–706Google Scholar
  17. 17.
    Lovley D R, Giovannoni S J, White D C, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol, 1993, 159: 336–344CrossRefGoogle Scholar
  18. 18.
    Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 2006, 4: 752–764CrossRefGoogle Scholar
  19. 19.
    Shi L, Dong H, Reguera G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Micro, 2016, 14: 651–662CrossRefGoogle Scholar
  20. 20.
    Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Ann Rev Microbiol, 1994, 48: 311–343CrossRefGoogle Scholar
  21. 21.
    Nealson K H, Belz A, McKee B. Breathing metals as a way of life: Geobiology in action. Antonie van Leeuwenhoek, 2002, 81: 215–222CrossRefGoogle Scholar
  22. 22.
    Jiang Y, Shi M, Shi L. Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements. Sci China Life Sci, 2019, doi:  https://doi.org/10.1007/s11427-018-9464-3
  23. 23.
    Temple K L, Colmer A R. The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J Bacteriol, 1951, 62: 605–611Google Scholar
  24. 24.
    Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol, 1997, 63: 4784–4792Google Scholar
  25. 25.
    Emerson D, Rentz J A, Lilburn T G, et al. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE, 2007, 2: e667CrossRefGoogle Scholar
  26. 26.
    Jiao Y, Kappler A, Croal L R, et al. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl Environ MicroBiol, 2005, 71: 4487–1496CrossRefGoogle Scholar
  27. 27.
    Jiao Y, Newman D K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriology, 2007, 189: 1765–1773CrossRefGoogle Scholar
  28. 28.
    Castelle C, Guiral M, Malarte G, et al. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem, 2008, 283: 25803–25811CrossRefGoogle Scholar
  29. 29.
    Liu J, Wang Z, Belchik S M, et al. Identification and characterization of MtoA: A decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbiol, 2012, 3: 37Google Scholar
  30. 30.
    Shi L, Rosso K M, Zachara J M, et al. Mtr extracellular electrontransfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: A genomic perspective. Biochm Soc Trans, 2012, 40: 1261–1267CrossRefGoogle Scholar
  31. 31.
    Emerson D, Field E K, Chertkov O, et al. Comparative genomics of freshwater Fe-oxidizing bacteria: Implications for physiology, ecology, and systematics. Front Microbiol, 2013, 4: 254CrossRefGoogle Scholar
  32. 32.
    Emerson D, Fleming E J, McBeth J M. Iron-oxidizing bacteria: An environmental and genomic perspective. Ann Rev Microbiol, 2010, 64: 561–583CrossRefGoogle Scholar
  33. 33.
    Summers Z M, Fogarty H E, Leang C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 2010, 330: 1413–1415CrossRefGoogle Scholar
  34. 34.
    Rotaru A E, Shrestha P M, Liu F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol, 2014, 80: 4599–4605CrossRefGoogle Scholar
  35. 35.
    Rotaru A E, Shrestha P M, Liu F, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci, 2014, 7: 408–415CrossRefGoogle Scholar
  36. 36.
    Lovley D R. Syntrophy goes electric: Direct interspecies electron transfer. Ann Rev Microbiol, 2017, 71: 643–664CrossRefGoogle Scholar
  37. 37.
    Lovley D R. Happy together: Microbial communities that hook up to swap electrons. ISME J, 2017, 11: 327–336CrossRefGoogle Scholar
  38. 38.
    Ha P T, Lindemann S R, Shi L, et al. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat Commun, 2017, 8: 13924CrossRefGoogle Scholar
  39. 39.
    Deng X, Dohmae N, Nealson K H, et al. Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv, 2018, 4: eaao5682CrossRefGoogle Scholar
  40. 40.
    McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 2015, 526: 531–535CrossRefGoogle Scholar
  41. 41.
    Wegener G, Krukenberg V, Riedel D, et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 2015, 526: 587–590CrossRefGoogle Scholar
  42. 42.
    Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 2016, 351: 703–707CrossRefGoogle Scholar
  43. 43.
    Skennerton C T, Chourey K, Iyer R, et al. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methano-tr_phic archaea. mBio, 2017, 8: e00530–17Google Scholar
  44. 44.
    Thauer R K. Anaerobic oxidation of methane with sulfate: On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol, 2011, 14: 292–299CrossRefGoogle Scholar
  45. 45.
    Gorby Y, McLean J, Korenevsky A, et al. Redox-reactive membrane vesicles produced by Shewanella. Geobiology, 2008, 6: 232–241CrossRefGoogle Scholar
  46. 46.
    Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA, 2006, 103: 11358–11363CrossRefGoogle Scholar
  47. 47.
    El-Naggar M Y, Gorby Y A, Xia W, et al. The molecular density of states in bacterial nanowires. Biophys J, 2008, 95: L10–L12CrossRefGoogle Scholar
  48. 48.
    El-Naggar M Y, Wanger G, Leung K M, et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci USA, 2010, 107: 18127–18131CrossRefGoogle Scholar
  49. 49.
    Pirbadian S, Barchinger S E, Leung K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA, 2014, 111: 12883–12888CrossRefGoogle Scholar
  50. 50.
    Pirbadian S, El-Naggar M Y. Multistep hopping and extracellular charge transfer in microbial redox chains. Phys Chem Chem Phys, 2012, 14: 13802–13808CrossRefGoogle Scholar
  51. 51.
    Subramanian P, Pirbadian S, El-Naggar M Y, et al. Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc Natl Acad Sci USA, 2018, 115: E3246–E3255CrossRefGoogle Scholar
  52. 52.
    Xu S, Barrozo A, Tender L M, et al. Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 Cells. J Am Chem Soc, 2018, 140: 10085–10089CrossRefGoogle Scholar
  53. 53.
    Pfeffer C, Larsen S, Song J, et al. Filamentous bacteria transport electrons over centimetre distances. Nature, 2012, 491: 218–221CrossRefGoogle Scholar
  54. 54.
    Bjerg J T, Boschker H T S, Larsen S, et al. Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA, 2018, 115: 5786–5791CrossRefGoogle Scholar
  55. 55.
    Liu X, Shi L, Gu J D. Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotech Adv, 2018, 36: 1815–1827CrossRefGoogle Scholar
  56. 56.
    White G F, Edwards M J, Gomez-Perez L, et al. Mechanisms of bacterial extracellular electron exchange. Adv Microb Physiol, 2016, 68: 87–138CrossRefGoogle Scholar
  57. 57.
    Kotloski N J, Gralnick J A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio, 2013, 4: e00553CrossRefGoogle Scholar
  58. 58.
    Meitl L A, Eggleston C M, Colberg P J S, et al. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim Cosmochim Acta, 2009, 73: 5292–5307CrossRefGoogle Scholar
  59. 59.
    Okamoto A, Hashimoto K, Nealson K H, et al. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci USA, 2013, 110: 7856–7861CrossRefGoogle Scholar
  60. 60.
    Coursolle D, Baron D B, Bond D R, et al. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriology, 2010, 192: 467–474CrossRefGoogle Scholar
  61. 61.
    Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA, 2008, 105: 3968–3973CrossRefGoogle Scholar
  62. 62.
    von Canstein H, Ogawa J, Shimizu S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol, 2008, 74: 615–623CrossRefGoogle Scholar
  63. 63.
    Shi L, Chen B, Wang Z, et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriology, 2006, 188: 4705–4714CrossRefGoogle Scholar
  64. 64.
    Ross D E, Flynn J M, Baron D B, et al. Towards electrosynthesis in Shewanella: Energetics of reversing the mtr pathway for reductive metabolism. PLoS ONE, 2011, 6: e16649CrossRefGoogle Scholar
  65. 65.
    Rowe A R, Rajeev P, Jain A, et al. Tracking electron uptake from a cathode into Shewanella cells: implications for energy acquisition from solid-substrate electron donors. mBio, 2018, 9: e02203–17CrossRefGoogle Scholar
  66. 66.
    Steidl R J, Lampa-Pastirk S, Reguera G. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nat Commun, 2016, 7: 12217CrossRefGoogle Scholar
  67. 67.
    Golden J, Yates M D, Halsted M, et al. Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms. Phys Chem Chem Phys, 2018, 20: 25648–25656CrossRefGoogle Scholar
  68. 68.
    Inoue K, Leang C, Franks A E, et al. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environ Microbiol Rep, 2011, 3: 211–217CrossRefGoogle Scholar
  69. 69.
    Inoue K, Qian X, Morgado L, et al. Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. Appl Environ Microbiol, 2010, 76: 3999–4007CrossRefGoogle Scholar
  70. 70.
    Chan C H, Levar C E, Jiménez-Otero F, et al. Genome scale mutational analysis of Geobacter sulfurreducens reveals distinct molecular mechanisms for respiration and sensing of poised electrodes versus Fe(III) oxides. J Bacteriol, 2017, 199: e00340–17Google Scholar
  71. 71.
    Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435: 1098–1101CrossRefGoogle Scholar
  72. 72.
    Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 2012, 337: 686–690CrossRefGoogle Scholar
  73. 73.
    Cheng S, Logan B E. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA, 2007, 104: 18871–18873CrossRefGoogle Scholar
  74. 74.
    Reguera G, Nevin K P, Nicoll J S, et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol, 2006, 72: 7345–7348CrossRefGoogle Scholar
  75. 75.
    Hu H, Fan Y, Liu H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res, 2008, 42: 4172–4178CrossRefGoogle Scholar
  76. 76.
    Call D F, Wagner R C, Logan B E. Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell. Appl Environ Microbiol, 2009, 75: 7579–7587CrossRefGoogle Scholar
  77. 77.
    Lu L, Guest J S, Peters C A, et al. Wastewater treatment for carbon capture and utilization. Nat Sustain, 2018, 1: 750–758CrossRefGoogle Scholar
  78. 78.
    Kouzuma A, Oba H, Tajima N, et al. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression. BMC Microbiol, 2014, 14: 190CrossRefGoogle Scholar
  79. 79.
    Kouzuma A, Meng X Y, Kimura N, et al. Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol, 2010, 76: 4151–4157CrossRefGoogle Scholar
  80. 80.
    Liu T, Yu Y Y, Deng X P, et al. Enhanced Shewanella biofilm promotes bioelectricity generation. Biotech Bioeng, 2015, 112: 2051–2059CrossRefGoogle Scholar
  81. 81.
    Li F, Li Y X, Cao Y X, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat Commun, 2018, 9: 3637CrossRefGoogle Scholar
  82. 82.
    Velasquez-Orta S B, Head I M, Curtis T P, et al. The effect of flavin electron shuttles in microbial fuel cells current production. Appl Microbiol Biotech, 2010, 85: 1373–1381CrossRefGoogle Scholar
  83. 83.
    Li F, Li Y, Sun L, et al. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotech Biofuels, 2017, 10: 196CrossRefGoogle Scholar
  84. 84.
    Li F, Yin C, Sun L, et al. Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells. Biotechnol J, 2018, 13: 1700491CrossRefGoogle Scholar
  85. 85.
    Qian F, Wang H, Ling Y, et al. Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Lett, 2014, 14: 3688–3693CrossRefGoogle Scholar
  86. 86.
    Tan Y, Adhikari R Y, Malvankar N S, et al. Expressing the Geo_bacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity. mBio, 2017, 8: e02203–16CrossRefGoogle Scholar
  87. 87.
    Reguera G, Pollina R B, Nicoll J S, et al. Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J Bacteriology, 2007, 189: 2125–2127CrossRefGoogle Scholar
  88. 88.
    Yi H, Nevin K P, Kim B C, et al. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron, 2009, 24: 3498–3503CrossRefGoogle Scholar
  89. 89.
    Butler J E, Young N D, Aklujkar M, et al. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production. BMC Genomics, 2012, 13: 471CrossRefGoogle Scholar
  90. 90.
    Qu Y, Feng Y, Wang X, et al. Use of a coculture to enable current production by geobacter sulfurreducens. Appl Environ Microbiol, 2012, 78: 3484–3487CrossRefGoogle Scholar
  91. 91.
    Kimura Z, Okabe S. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. ISME J, 2013, 7: 1472–1482CrossRefGoogle Scholar
  92. 92.
    McAnulty M J G, Poosarla V. Kim K Y, et al. Electricity from methane by reversing methanogenesis. Nat Commun, 2017, 8: 15419CrossRefGoogle Scholar
  93. 93.
    Li D B, Cheng Y Y, Li L L, et al. Light-driven microbial dissimilatory electron transfer to hematite. Phys Chem Chem Phys, 2014, 16: 23003–23011CrossRefGoogle Scholar
  94. 94.
    Nishio K, Hashimoto K, Watanabe K. Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. J Biosci Bioeng, 2013, 115: 412–417CrossRefGoogle Scholar
  95. 95.
    Tender L M, Gray S A, Groveman E, et al. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J Power Sources, 2008, 179: 571–575CrossRefGoogle Scholar
  96. 96.
    Flynn J M, Ross D E, Hunt K A, et al. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio, 2010, 1: e00190–10CrossRefGoogle Scholar
  97. 97.
    Bursac T, Gralnick J A, Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotech Bioeng, 2017, 114: 1283–1289CrossRefGoogle Scholar
  98. 98.
    Speers A M, Reguera G. Consolidated bioprocessing of AFEX-pretreated corn stover to ethanol and hydrogen in a microbial electrolysis cell. Environ Sci Tech, 2012, 46: 7875–7881CrossRefGoogle Scholar
  99. 99.
    Speers A M, Young J M, Reguera G. Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. Environ Sci Tech, 2014, 48: 6350–6358CrossRefGoogle Scholar
  100. 100.
    Zhang T, Gannon S M, Nevin K P, et al. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ MicroBiol, 2010, 12: 1011–1020CrossRefGoogle Scholar
  101. 101.
    Adelaja O, Keshavarz T, Kyazze G. Treatment of phenanthrene and benzene using microbial fuel cells operated continuously for possible in situ and ex situ applications. Int Biodeterioration Biodegradation, 2017, 116: 91–103CrossRefGoogle Scholar
  102. 102.
    Domínguez-Garay A, Quejigo J R, Dörfler U, et al. Bioelectroventing: An electrochemical-assisted bioremediation strategy for cleaning-up atrazine-polluted soils. Microb Biotech, 2018, 11: 50–62CrossRefGoogle Scholar
  103. 103.
    Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol, 2004, 6: 596–604CrossRefGoogle Scholar
  104. 104.
    Strycharz S M, Woodard T L, Johnson J P, et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol, 2008, 74: 5943–5947CrossRefGoogle Scholar
  105. 105.
    Gregory K B, Lovley D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Tech, 2005, 39: 8943–8947CrossRefGoogle Scholar
  106. 106.
    Daghio M, Aulenta F, Vaiopoulou E, et al. Electrobioremediation of oil spills. Water Res, 2017, 114: 351–370CrossRefGoogle Scholar
  107. 107.
    Pous N, Balaguer M D, Colprim J, et al. Opportunities for groundwater microbial electro-remediation. Microb Biotech, 2018, 11: 119–135CrossRefGoogle Scholar
  108. 108.
    Rabaey K, Rozendal R A. Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat Rev Micro, 2010, 8: 706–716CrossRefGoogle Scholar
  109. 109.
    Lovley D R, Nevin K P. Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotech, 2013, 24: 385–390CrossRefGoogle Scholar
  110. 110.
    Ueki T, Nevin K P, Woodard T L, et al. Construction of a Geobacter strain with exceptional growth on cathodes. Front Microbiol, 2018, 9: 1512CrossRefGoogle Scholar
  111. 111.
    Levar C E, Hoffman C L, Dunshee A J, et al. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J, 2017, 11: 741–752CrossRefGoogle Scholar
  112. 112.
    Hirose A, Kasai T, Aoki M, et al. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nat Commun, 2018, 9: 1083CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences and Technology, School of Environmental StudiesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina

Personalised recommendations