Science China Technological Sciences

, Volume 62, Issue 9, pp 1596–1604 | Cite as

Development of integrated two-stage thermoelectric generators for large temperature difference

  • Jun Pei
  • LiangLiang Li
  • DaWei Liu
  • BoPing ZhangEmail author
  • Yu Xiao
  • JingFeng LiEmail author


Multi-stage thermoelectric (TE) modules can withstand a large temperature difference and can be used to obtain a high conversion efficiency. In this study, two-stage PbTe/Bi2Te3 TE modules were developed with an enhanced efficiency through a comprehensive study of device structure design, module fabrication, and performance evaluation. PbTe-based AgPbmSbTem+2 (abbreviated as LAST) is a typically high ZT material, while the corresponding TE module was rarely reported so far. How to utilize LAST to fabricate high efficiency TE modules therefore remains a central problem. Finite element simulation indicates that the temperature stability of the two-stage module for LAST is better than that of two-segmented module. Compared to Cu, Ni, and Ni-Fe alloys, Co-Fe alloy is an effective metallization layer for PbTe due to its low contact resistance and thin diffusion layer. By sintering a slice of Cu on TE legs, pure tinfoil can be used as a common welding method for mid-temperature TE modules. A maximum efficiency (ηmax) of 9.5% was achieved in the range of 303 to 923 K in an optimized PbTe/Bi2Te3 based two-stage module, which was almost twice that of a commercial TE module.


PbTe thermoelectric two-stage module finite element method conversion efficiency 


Supplementary material

11431_2019_9498_MOESM1_ESM.pdf (920 kb)
Development of integrated two-stage thermoelectric generators for large temperature difference


  1. 1.
    Gayner C, Kar K K. Recent advances in thermoelectric materials. Prog Mater Sci, 2016, 83: 330–382CrossRefGoogle Scholar
  2. 2.
    Han C, Sun Q, Li Z, et al. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv Energy Mater, 2016, 6: 1600498CrossRefGoogle Scholar
  3. 3.
    Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455CrossRefGoogle Scholar
  4. 4.
    Rowe D M. CRC Handbook of Thermoelectrics. New York: CRC Press, 1995. 32–39CrossRefGoogle Scholar
  5. 5.
    Goldsmid H J. Introduction to Thermoelectricicty. Heidelberg: Springer, 2010CrossRefGoogle Scholar
  6. 6.
    Li J F, Pan Y, Wu C F, et al. Processing of advanced thermoelectric materials. Sci China Tech Sci, 2017, 60: 1347–1364CrossRefGoogle Scholar
  7. 7.
    Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320: 634–638CrossRefGoogle Scholar
  8. 8.
    Li J, Tan Q, Li J F, et al. BiSbTe-based nanocomposites with high ZT The effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater, 2013, 23: 4317–4323CrossRefGoogle Scholar
  9. 9.
    Liu W S, Zhang Q, Lan Y, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater, 2011, 1: 577–587CrossRefGoogle Scholar
  10. 10.
    Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk thermo-electric materials with high figure of merit. Science, 2004, 303: 818–821CrossRefGoogle Scholar
  11. 11.
    Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321: 554–557CrossRefGoogle Scholar
  12. 12.
    Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473: 66–69CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Wang H, Zhang Q, et al. Effect of silicon and sodium on thermoelectric properties of thallium-doped lead telluride-based materials. Nano Lett, 2012, 12: 2324–2330CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Wang H, Liu W, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ Sci, 2012, 5: 5246–5251CrossRefGoogle Scholar
  15. 15.
    Wang H, Pei Y, LaLonde A D, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc Natl Acad Sci USA, 2012, 109: 9705–9709CrossRefGoogle Scholar
  16. 16.
    Joshi G, Lee H, Lan Y, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett, 2008, 8: 4670–4674CrossRefGoogle Scholar
  17. 17.
    Wang X W, Lee H, Lan Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett, 2008, 93: 193121CrossRefGoogle Scholar
  18. 18.
    Liu W, Jie Q, Kim H S, et al. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater, 2015, 87: 357–376CrossRefGoogle Scholar
  19. 19.
    Zhao L D, Lo S H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377CrossRefGoogle Scholar
  20. 20.
    Zhao L D, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351: 141–144CrossRefGoogle Scholar
  21. 21.
    Duong A T, Nguyen V Q, Duvjir G, et al. Achieving ZT=2.2 with Bidoped n-type SnSe single crystals. Nat Commun, 2016, 7: 13713CrossRefGoogle Scholar
  22. 22.
    Liu H, Yuan X, Lu P, et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−xIx. Adv Mater, 2013, 25: 6607–6612CrossRefGoogle Scholar
  23. 23.
    Olvera A A, Moroz N A, Sahoo P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci, 2017, 10: 1668–1676CrossRefGoogle Scholar
  24. 24.
    Zhao L D, Berardan D, Pei Y L, et al. Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett, 2010, 97: 092118CrossRefGoogle Scholar
  25. 25.
    Zhao L D, He J, Berardan D, et al. BiCuSeO oxyselenides: New promising thermoelectric materials. Energy Environ Sci, 2014, 7: 2900–2924CrossRefGoogle Scholar
  26. 26.
    Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321: 1457–1461CrossRefGoogle Scholar
  27. 27.
    Yang J, Stabler F R. Automotive applications of thermoelectric materials. J Elec Materi, 2009, 38: 1245–1251CrossRefGoogle Scholar
  28. 28.
    Fitriani, Ovik R, Long B D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew Sustain Energy Rev, 2016, 64: 635–659CrossRefGoogle Scholar
  29. 29.
    Ikoma K, Munekiyo M, Furuya K, et al. Thermoelectric module and generator for gasoline engine vehicles. In: Seventeenth International Conference on Thermoelectrics. Nagoya: IEEE, 1998. 464–467Google Scholar
  30. 30.
    Amatya R, Ram R J. Solar thermoelectric generator for micropower applications. J Elec Mater, 2010, 39: 1735–1740CrossRefGoogle Scholar
  31. 31.
    Hu X, Nagase K, Jood P, et al. Power generation evaluated on a bismuth telluride unicouple module. J Elec Mater, 2015, 44: 1785–1790CrossRefGoogle Scholar
  32. 32.
    Chen W H, Wu P H, Wang X D, et al. Power output and efficiency of a thermoelectric generator under temperature control. Energy Convers Manage, 2016, 127: 404–415CrossRefGoogle Scholar
  33. 33.
    Salvador J R, Cho J Y, Ye Z, et al. Conversion efficiency of skutterudite-based thermoelectric modules. Phys Chem Chem Phys, 2014, 16: 12510–12520CrossRefGoogle Scholar
  34. 34.
    Xiao J, Yang T, Li P, et al. Thermal design and management for performance optimization of solar thermoelectric generator. Appl Energy, 2012, 93: 33–38CrossRefGoogle Scholar
  35. 35.
    El-Genk M S, Saber H H, Caillat T, et al. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers Manage, 2006, 47: 174–200CrossRefGoogle Scholar
  36. 36.
    Zhang Q, Liao J, Tang Y, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ Sci, 2017, 10: 956–963CrossRefGoogle Scholar
  37. 37.
    Kraemer D, Jie Q, McEnaney K, et al. concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat Energy, 2016, 1: 16153CrossRefGoogle Scholar
  38. 38.
    Manikandan S, Kaushik S C. The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator. Energy, 2016, 100: 227–237CrossRefGoogle Scholar
  39. 39.
    Angeline A A, Jayakumar J, Asirvatham L G, et al. Power generation enhancement with hybrid thermoelectric generator using biomass waste heat energy. Exp Thermal Fluid Sci, 2017, 85: 1–12CrossRefGoogle Scholar
  40. 40.
    Hu X, Jood P, Ohta M, et al. Power generation from nanostructured PbTe-based thermoelectrics: Comprehensive development from materials to modules. Energy Environ Sci, 2016, 9: 517–529CrossRefGoogle Scholar
  41. 41.
    Li S, Pei J, Liu D, et al. Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering. Energy, 2016, 113: 35–43CrossRefGoogle Scholar
  42. 42.
    Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J Am Chem Soc, 2008, 130: 4527–4532CrossRefGoogle Scholar
  43. 43.
    Li Z Y, Li J F. Fine-grained and nanostructured AgPbmSbTem+2 alloys with high thermoelectric figure of merit at medium temperature. Adv Energy Mater, 2014, 4: 1300937CrossRefGoogle Scholar
  44. 44.
    Zhao L D, Dravid V P, Kanatzidis M G. The panoscopic approach to high performance thermoelectrics. Energy Environ Sci, 2014, 7: 251–268CrossRefGoogle Scholar
  45. 45.
    Kosuga A, Uno M, Kurosaki K, et al. Thermoelectric properties of Ag1-xPb18SbTe20 (x=0, 0.1, 0.3). J Alloys Compd, 2005, 387: 52–55CrossRefGoogle Scholar
  46. 46.
    Kosuga A, Uno M, Kurosaki K, et al. Thermoelectric properties of stoichiometric Ag1-xPb18SbTe20 (x=0, 0.1, 0.2). J Alloys Compd, 2005, 391: 288–291CrossRefGoogle Scholar
  47. 47.
    Kosuga A, Kurosaki K, Muta H, et al. Thermoelectric properties of ptype (AgSbTe2)x(Pb0.5Sn0.5Te)1-x (x=0.05, 0.09, 0.2). J Alloys Compd, 2006, 416: 218–221CrossRefGoogle Scholar
  48. 48.
    Dow H S, Oh M W, Park S D, et al. Thermoelectric properties of AgPbmSbTem+2 (12≤m≤26) at elevated temperature. J Appl Phys, 2009, 105: 113703CrossRefGoogle Scholar
  49. 49.
    Li H, Cai K F, Wang H F, et al. The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. J Solid State Chem, 2009, 182: 869–874CrossRefGoogle Scholar
  50. 50.
    Li Z Y, Li J F. Thermoelectric performance of AgPbxSbTe20 (x=17 to 23) bulk materials derived from large-particle raw materials. J Elec Mater, 2012, 41: 1365–1369CrossRefGoogle Scholar
  51. 51.
    Yu Z, Li J F, Zhang B P, et al. Synthesis and thermoelectric properties of LAST system bulk materials: Substitution of sulfur for tellurium. J Elec Mater, 2012, 41: 1337–1342CrossRefGoogle Scholar
  52. 52.
    Li Z Y, Zou M, Li J F. Comparison of thermoelectric performance of AgPbxSbTe20 (x=20–22.5) polycrystals fabricated by different methods. J Alloys Compd, 2013, 549: 319–323CrossRefGoogle Scholar
  53. 53.
    Li Z Y, Li J F, Zhao W Y, et al. PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion. Appl Phys Lett, 2014, 104: 113905CrossRefGoogle Scholar
  54. 54.
    Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414–418CrossRefGoogle Scholar
  55. 55.
    El-Genk M S, Saber H H, Caillat T. Efficient segmented thermoelectric unicouples for space power applications. Energy Convers Manage, 2003, 44: 1755–1772CrossRefGoogle Scholar
  56. 56.
    Liu C, Pan X, Zheng X, et al. An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust. J Energy Institute, 2016, 89: 271–281CrossRefGoogle Scholar
  57. 57.
    Hsiao Y Y, Chang W C, Chen S L. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 2010, 35: 1447–1454CrossRefGoogle Scholar
  58. 58.
    Mitrani D, Tome J A, Salazar J, et al. Methodology for extracting thermoelectric module parameters. IEEE Trans Instrum Meas, 2004, 54: 1548–1552CrossRefGoogle Scholar
  59. 59.
    Tsai H L, Lin J M. Model building and simulation of thermoelectric module using Matlab/Simulink. J Elec Mater, 2010, 39: 2105–2111CrossRefGoogle Scholar
  60. 60.
    Jang J Y, Tsai Y C, Wu C W. A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink. Energy, 2013, 53: 270–281CrossRefGoogle Scholar
  61. 61.
    Lin T Y, Liao C N, Wu A T. Evaluation of diffusion barrier between lead-free solder systems and thermoelectric materials. J Elec Mater, 2012, 41: 153–158CrossRefGoogle Scholar
  62. 62.
    Liu W, Wang H, Wang L, et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J Mater Chem A, 2013, 1: 13093CrossRefGoogle Scholar
  63. 63.
    Skomedal G, Holmgren L, Middleton H, et al. Design, assembly and characterization of silicide-based thermoelectric modules. Energy Convers Manage, 2016, 110: 13–21CrossRefGoogle Scholar
  64. 64.
    Kraemer D, Sui J, McEnaney K, et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ Sci, 2015, 8: 1299–1308CrossRefGoogle Scholar
  65. 65.
    D’Angelo J, Case E D, Matchanov N, et al. Electrical, thermal, and mechanical characterization of novel segmented-leg thermoelectric modules. J Elec Mater, 2011, 40: 2051–2062CrossRefGoogle Scholar
  66. 66.
    Hori Y, Ito T. Fabrication of 500 degrees C class thermoelectric module and evaluation of its high temperature stability. In: 2006 25th International Conference on Thermoelectrics. Vienna: IEEE, 2006. 642–645CrossRefGoogle Scholar
  67. 67.
    Guo J Q, Geng H Y, Ochi T, et al. Development of skutterudite thermoelectric materials and modules. J Elec Mater, 2012, 41: 1036–1042CrossRefGoogle Scholar
  68. 68.
    Muto A, Yang J, Poudel B, et al. Skutterudite unicouple characterization for energy harvesting applications. Adv Energy Mater, 2013, 3: 245–251CrossRefGoogle Scholar
  69. 69.
    Kaibe H, Aoyama I, Mukoujima M, et al. Development of thermoelectric generating stacked modules aiming for 15% of conversion efficiency. In: 24th International Conference on Thermoelectrics, 2005. Clemson, IEEE, 2005. 242–247Google Scholar
  70. 70.
    Anatychuk L I, Vikhor L N, Strutynska L T, et al. Segmented generator modules using Bi2Te3-based materials. J Elec Mater, 2011, 40: 957–961CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijingChina
  3. 3.Huaneng Clean Energy Research InstituteBeijingChina
  4. 4.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations