Some new mesoscopic crossover length scales concerning the Hamaker constant

  • YaPu ZhaoEmail author
News and Views


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu Z P, Zheng Q S. Micro- and nano-mechanics in China: A brief review of recent progress and perspectives. Sci China-Phys Mech Astron, 2018, 61: 074601CrossRefGoogle Scholar
  2. 2.
    Zhao Y P. Nano and Mesoscopic Mechanics. Beijing: Science Press, 2014Google Scholar
  3. 3.
    Yakobson B I, Smalley R E. Fullerene nanotubes: C1,000,000 and beyond. Am Scientist, 1997, 85: 324-337Google Scholar
  4. 4.
    Zhao Y P. Physical Mechanics of Surfaces and Interfaces. Beijing: Science Press, 2012Google Scholar
  5. 5.
    Gao M N, Huang X F, Zhao Y P. Formation of wavy-ring crack in drying droplet of protein solutions. Sci China Tech Sci, 2018, 61: 949–958CrossRefGoogle Scholar
  6. 6.
    Wang Z L, Chen E H, Zhao Y P. The effect of surface anisotropy on contact angles and the characterization of elliptical cap droplets. Sci China Tech Sci, 2018, 61: 309–316CrossRefGoogle Scholar
  7. 7.
    Yu Y S, Xia X L, Zheng X, et al. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface. Sci China-Phys Mech Astron, 2017, 60: 094612CrossRefGoogle Scholar
  8. 8.
    Wang X H, Shen W H, Huang X F, et al. Estimating the thickness of diffusive solid electrolyte interface. Sci China-Phys Mech Astron, 2017, 60: 064612CrossRefGoogle Scholar
  9. 9.
    Yang F Q. Relation between surface stress and surface energy for an elastic sphere: Effects of deformation and Maxwell stress. Sci China-Phys Mech Astron, 2017, 60: 104621CrossRefGoogle Scholar
  10. 10.
    Zhao Y P, Wang L S, Yu T X. Mechanics of adhesion in MEMS—A review. J Adhes Sci Technol, 2003, 17: 519–546CrossRefGoogle Scholar
  11. 11.
    Zhu H, Zhao Y, He Z, et al. An elastic-plastic contact model for line contact structures. Sci China-Phys Mech Astron, 2018, 61: 054611CrossRefGoogle Scholar
  12. 12.
    Tadmor E B, Ortiz M, Phillips R. Quasicontinuum analysis of defects in solids. Philos Mag A, 1996, 73: 1529–1563CrossRefGoogle Scholar
  13. 13.
    Shenoy V B, Miller R, Tadmor E B, et al. Quasicontinuum models of interfacial structure and deformation. Phys Rev Lett, 1998, 80: 742–745CrossRefGoogle Scholar
  14. 14.
    Yang Z, Zhao Y P. QM/MM and classical molecular dynamics simulation of histidine-tagged peptide immobilization on nickel surface. Mater Sci Eng-A, 2006, 423: 84–91CrossRefGoogle Scholar
  15. 15.
    Yin J, Zhao Y P. Hybrid QM/MM simulation of the hydration phenomena of dipalmitoylphosphatidylcholine headgroup. J Colloid Interface Sci, 2009, 329: 410–415CrossRefGoogle Scholar
  16. 16.
    Kallmann H, Willstaetter M. Zur theorie des aufbaues kolloidaler systeme. Naturwissenschaften, 1932, 20: 952–953CrossRefGoogle Scholar
  17. 17.
    Bradley R S. LXXIX. The cohesive force between solid surfaces and the surface energy of solids. London Edinburgh Dublin Philos Mag J Sci, 1932, 13: 853–862CrossRefGoogle Scholar
  18. 18.
    Sparnaay M J. Four notes on van der Waals forces. Induction effect, nonadditivity, attraction between a cone and a flat plate (asperities), history. J Colloid Interface Sci, 1983, 91: 307–319CrossRefGoogle Scholar
  19. 19.
    de Boer J H. The influence of van der Waals’ forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins. Trans Faraday Soc, 1936, 32: 10–37CrossRefGoogle Scholar
  20. 20.
    Hamaker H C. The London-van der Waals attraction between spherical particles. Physica, 1937, 4: 1058–1072CrossRefGoogle Scholar
  21. 21.
    Mysels K J, Scholten P C. C&SC Folklore. 4. H. C. Hamaker, more than a constant. Langmuir, 1991, 7: 209–211CrossRefGoogle Scholar
  22. 22.
    Lin K, Zhao Y P. Mechanical peeling of van der Waals heterostructures: Theory and simulations. Extreme Mech Lett, 2019, 30: 100501CrossRefGoogle Scholar
  23. 23.
    Masubuchi S, Morimoto M, Morikawa S, et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat Commun, 2018, 9: 1413CrossRefGoogle Scholar
  24. 24.
    Wang Y, Kim J C, Wu R J, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019, 568: 70–74CrossRefGoogle Scholar
  25. 25.
    Lin W H, Zhao Y P. Dynamic behaviour of nanoscale electrostatic actuators. Chin Phys Lett, 2003, 20: 2070–2073CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Nonlinear Mechanics (LNM), Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations