Advertisement

Science China Technological Sciences

, Volume 62, Issue 8, pp 1385–1387 | Cite as

Challenges and opportunities in chemomechanics of materials: A perspective

  • Ting ZhuEmail author
  • XuFei Fang
  • BaoLin Wang
  • ShengPing Shen
  • Xue Feng
Perspective
  • 48 Downloads

Abstract

Chemomechanics of materials is an exciting and fast growing field where mechanics meets chemistry. This perspective presents a brief overview of recent advance in the study of materials chemomechanics. We identify challenges and opportunities for tackling the long-standing and emerging problems for the field.

Keywords

chemomechanics in situ experiment non-linear field theory multiscale modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc A, 1949, 62: 49–62CrossRefGoogle Scholar
  2. 2.
    Rice J R. Thermodynamics of the quasi-static growth of Griffith cracks. J Mech Phys Solids, 1978, 26: 61–78CrossRefzbMATHGoogle Scholar
  3. 3.
    Lawn B. Fracture of Brittle Solids. Cambridge: Cambridge University Press, 1993CrossRefGoogle Scholar
  4. 4.
    Michalske T A, Freiman S W. A molecular interpretation of stress corrosion in silica. Nature, 1982, 295: 511–512CrossRefGoogle Scholar
  5. 5.
    Rice J R. Hydrogen and interfacial cohesion. In: Thompson A W, Bernstein I M, eds. Effect of Hydrogen on Behavior of Materials. New York: Metallurgical Society of AIME, 1976. 455–466Google Scholar
  6. 6.
    Argon A S. Strengthening Mechanisms in Crystal Plasticity. New York: Oxford Unversity Press, 2008Google Scholar
  7. 7.
    Cabrera N, Mott N F. Theory of the oxidation of metals. Rep Prog Phys, 1948, 12: 163–184CrossRefGoogle Scholar
  8. 8.
    Mott N F, Rigo S, Rochet F, et al. Oxidation of silicon. Philos Mag B, 1989, 60: 189–212CrossRefGoogle Scholar
  9. 9.
    Pastewka L, Moser S, Gumbsch P, et al. Anisotropic mechanical amorphization drives wear in diamond. Nat Mater, 2011, 10: 34–38CrossRefGoogle Scholar
  10. 10.
    Zhu T, Li J. Ultra-strength materials. Prog Mater Sci, 2010, 55: 710–757CrossRefGoogle Scholar
  11. 11.
    Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367CrossRefGoogle Scholar
  12. 12.
    Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607CrossRefGoogle Scholar
  13. 13.
    Dong X, Fang X, Feng X, et al. Diffusion and stress coupling effect during oxidation at high temperature. J Am Ceram Soc, 2013, 96: 44–46CrossRefGoogle Scholar
  14. 14.
    McDowell M T, Lee S W, Nix W D, et al. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater, 2013, 25: 4966–4985CrossRefGoogle Scholar
  15. 15.
    Suo Z. Mechanics of stretchable electronics and soft machines. MRS Bull, 2012, 37: 218–225CrossRefGoogle Scholar
  16. 16.
    Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 2010, 330: 1515–1520CrossRefGoogle Scholar
  17. 17.
    Liu X H, Liu Y, Kushima A, et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater, 2012, 2: 722–741CrossRefGoogle Scholar
  18. 18.
    McDowell M T, Xia S, Zhu T. The mechanics oflarge-volume-change transformations in high-capacity battery materials. Extreme Mech Lett, 2016, 9: 480–494CrossRefGoogle Scholar
  19. 19.
    Zhang S, Zhao K, Zhu T, et al. Electrochemomechanical degradation of high-capacity battery electrode materials. Prog Mater Sci, 2017, 89: 479–521CrossRefGoogle Scholar
  20. 20.
    Liu X H, Zheng H, Zhong L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett, 2011, 11: 3312–3318CrossRefGoogle Scholar
  21. 21.
    Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6: 1522–1531CrossRefGoogle Scholar
  22. 22.
    Wang J W, He Y, Fan F, et al. Two-phase electrochemical lithiation in amorphous silicon. Nano Lett, 2013, 13: 709–715CrossRefGoogle Scholar
  23. 23.
    Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science, 2015, 347: 635–639CrossRefGoogle Scholar
  24. 24.
    Li Y, Fang X, Qu Z, et al. In situ full-field measurement of surface oxidation on Ni-based alloy using high temperature scanning probe microscopy. Sci Rep, 2018, 8: 6684CrossRefGoogle Scholar
  25. 25.
    Hao F, Gao X, Fang D. Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: The effects ofsurface stress. J Appl Phys, 2012, 112: 103507CrossRefGoogle Scholar
  26. 26.
    Yu P, Shen S. A fully coupled theory and variational principle for thermal-electrical-chemical-mechanical processes. J Appl Mech, 2014, 81: 111005CrossRefGoogle Scholar
  27. 27.
    Wang F, Turcheniuk K, Wang B, et al. Mechanisms of transformation of bulk aluminum-lithium alloys to aluminum metal-organic nanowires. J Am Chem Soc, 2018, 140: 12493–12500CrossRefGoogle Scholar
  28. 28.
    Hong W, Zhao X, Zhou J, et al. A theory of coupled diffusion and large deformation in polymeric gels. J Mech Phys Solids, 2008, 56: 1779–1793CrossRefzbMATHGoogle Scholar
  29. 29.
    Zhao K, Pharr M, Cai S, et al. Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J Am Ceram Soc, 2011, 94: s226–s235CrossRefGoogle Scholar
  30. 30.
    Keralavarma S M, Bower A F, Curtin W A. Quantum-to-continuum prediction of ductility loss in aluminium-magnesium alloys due to dynamic strain aging. Nat Commun, 2014, 5: 4604CrossRefGoogle Scholar
  31. 31.
    Nalla R K, Kinney J H, Ritchie R O. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater, 2003, 2: 164–168CrossRefGoogle Scholar
  32. 32.
    Gao H. Probing mechanical principles of cell-nanomaterial interactions. J Mech Phys Solids, 2014, 62: 312–339CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ting Zhu
    • 1
    Email author
  • XuFei Fang
    • 2
    • 3
    • 4
  • BaoLin Wang
    • 1
  • ShengPing Shen
    • 5
  • Xue Feng
    • 2
    • 3
  1. 1.Woodruff School of Mechanical EngineeringGeorge Institute of TechnologyAtlantaUSA
  2. 2.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
  3. 3.Center for Advanced Mechanics and MaterialsTsinghua UniversityBeijingChina
  4. 4.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  5. 5.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of AerospaceXi’an Jiaotong UniversityXi’anChina

Personalised recommendations