A cell-based model for analyzing growth and invasion of tumor spheroids

  • PengCheng Chen
  • Bo LiEmail author
  • XiQiao FengEmail author
Article Special Topic: Chemomechanics


Both chemical and mechanical determinants adapt and react throughout the process of tumor invasion. In this study, a cell-based model is used to uncover the growth and invasion of a three-dimensional solid tumor confined within normal cells. Each cell is treated as a spheroid that can deform, migrate, and proliferate. Some fundamental aspects of tumor development are considered, including normal tissue constraints, active cellular motility, homotypic and heterotypic intercellular interactions, and pressure-regulated cell division as well. It is found that differential motility between cancerous and normal cells tends to break the spheroidal symmetry, leading to a finger instability at the tumor rim, while stiff normal cells inhibit tumor branching and favor uniform tumor expansion. The heterotypic cell-cell adhesion is revealed to affect the branching geometry. Our results explain many experimental observations, such as fingering invasion during tumor growth, stiffness inhibition of tumor invasion, and facilitation of tumor invasion through cancerous-normal cell adhesion. This study helps understand how cellular events are coordinated in tumor morphogenesis at the tissue level.


tumor growth collective invasion cell-based modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xue S L, Li B, Feng X Q, et al. Biochemomechanical poroelastic theory of avascular tumor growth. J Mech Phys Solids, 2016, 94: 409–432MathSciNetCrossRefGoogle Scholar
  2. 2.
    Tracqui P. Biophysical models of tumour growth. Rep Prog Phys, 2009, 72: 056701CrossRefGoogle Scholar
  3. 3.
    Lin S Z, Li B, Xu G K, et al. Collective dynamics of cancer cells confined in a confluent monolayer of normal cells. J Biomech, 2017, 52: 140–147CrossRefGoogle Scholar
  4. 4.
    Lu P, Weaver V M, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol, 2012, 196: 395–406CrossRefGoogle Scholar
  5. 5.
    Frantz C, Stewart K M, Weaver V M. The extracellular matrix at a glance. J Cell Sci, 2010, 123: 4195–4200CrossRefGoogle Scholar
  6. 6.
    Delarue M, Montel F, Vignjevic D, et al. Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys J, 2014, 107: 1821–1828CrossRefGoogle Scholar
  7. 7.
    Helmlinger G, Netti P A, Lichtenbeld H C, et al. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol, 1997, 15: 778–783CrossRefGoogle Scholar
  8. 8.
    Montel F, Delarue M, Elgeti J, et al. Isotropic stress reduces cell proliferation in tumor spheroids. New J Phys, 2012, 14: 055008CrossRefGoogle Scholar
  9. 9.
    Montel F, Delarue M, Elgeti J, et al. Stress clamp experiments on multicellular tumor spheroids. Phys Rev Lett, 2011, 107: 188102CrossRefGoogle Scholar
  10. 10.
    Alessandri K, Sarangi B R, Gurchenkov V V, et al. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci USA, 2013, 110: 14843–14848CrossRefGoogle Scholar
  11. 11.
    Levayer R, Dupont C, Moreno E. Tissue crowding induces caspase-dependent competition for space. Curr Biol, 2016, 26: 670–677CrossRefGoogle Scholar
  12. 12.
    Fidler I J. The pathogenesis of cancer metastasis: The “seed and soil” hypothesis revisited. Nat Rev Cancer, 2003, 3: 453–458CrossRefGoogle Scholar
  13. 13.
    Haeger A, Krause M, Wolf K, et al. Cell jamming: Collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophysica Acta (BBA)-General Subjects, 2014, 1840: 2386–2395CrossRefGoogle Scholar
  14. 14.
    Friedl P, Locker J, Sahai E, et al. Classifying collective cancer cell invasion. Nat Cell Biol, 2012, 14: 777–783CrossRefGoogle Scholar
  15. 15.
    Turner S, Sherratt J A. Intercellular adhesion and cancer invasion: A discrete simulation using the extended Potts model. J Theor Biol, 2002, 216: 85–100MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hanahan D, Coussens L M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21: 309–322CrossRefGoogle Scholar
  17. 17.
    Labernadie A, Kato T, Brugués A, et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol, 2017, 19: 224–237CrossRefGoogle Scholar
  18. 18.
    Condeelis J, Pollard J W. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell, 2006, 124: 263–266CrossRefGoogle Scholar
  19. 19.
    Roose T, Chapman S J, Maini P K. Mathematical models of avascular tumor growth. SIAM Rev, 2007, 49: 179–208MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Szabó A, Merks R M H. Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution. Front Oncol, 2013, 3: 87CrossRefGoogle Scholar
  21. 21.
    Lin S Z, Li B, Feng X Q. A dynamic cellular vertex model of growing epithelial tissues. Acta Mech Sin, 2017, 33: 250–259MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li B, Sun S X. Coherent motions in confluent cell monolayer sheets. Biophys J, 2014, 107: 1532–1541CrossRefGoogle Scholar
  23. 23.
    Honda H, Tanemura M, Nagai T. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J Theor Biol, 2004, 226: 439–453MathSciNetCrossRefGoogle Scholar
  24. 24.
    Drasdo D, Höhme S. A single-cell-based model of tumor growth in vitro: Monolayers and spheroids. Phys Biol, 2005, 2: 133–147CrossRefGoogle Scholar
  25. 25.
    Drasdo D, Hoehme S. Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones. New J Phys, 2012, 14: 055025CrossRefGoogle Scholar
  26. 26.
    Lin S Z, Li B, Lan G, et al. Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer. Proc Natl Acad Sci USA, 2017, 114: 8157–8162CrossRefGoogle Scholar
  27. 27.
    Lin S Z, Xue S L, Li B, et al. An oscillating dynamic model of collective cells in a monolayer. J Mech Phys Solids, 2018, 112: 650–666MathSciNetCrossRefGoogle Scholar
  28. 28.
    Cross S E, Jin Y S, Rao J, et al. Nanomechanical analysis of cells from cancer patients. Nat Nanotech, 2007, 2: 780–783CrossRefGoogle Scholar
  29. 29.
    Hou H W, Li Q S, Lee G Y H, et al. Deformability study of breast cancer cells using microfluidics. Biomed Microdevices, 2009, 11: 557–564CrossRefGoogle Scholar
  30. 30.
    Lee G Y H, Lim C T. Biomechanics approaches to studying human diseases. Trends Biotech, 2007, 25: 111–118CrossRefGoogle Scholar
  31. 31.
    Li Q S, Lee G Y H, Ong C N, et al. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun, 2008, 374: 609–613CrossRefGoogle Scholar
  32. 32.
    Chen P C, Lin S Z, Xu G K, et al. Three-dimensional collective cell motions in an acinus-like lumen. J Biomech, 2019, 84: 234–242CrossRefGoogle Scholar
  33. 33.
    Carey S P, Starchenko A, McGregor A L, et al. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin Exp Metastasis, 2013, 30: 615–630CrossRefGoogle Scholar
  34. 34.
    Schaller G, Meyer-Hermann M. Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model. Phys Rev E, 2005, 71: 051910MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ladoux B, Mège R M. Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol, 2017, 18: 743–757CrossRefGoogle Scholar
  36. 36.
    Frixen U H. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol, 1991, 113: 173–185CrossRefGoogle Scholar
  37. 37.
    Smith P G, Deng L, Fredberg J J, et al. Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am J Physiol-Lung Cellular Mol Physiol, 2003, 285: L456–L463CrossRefGoogle Scholar
  38. 38.
    Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids. Proc R Soc A-Math Phys Eng Sci, 1971, 324: 301–313CrossRefGoogle Scholar
  39. 39.
    Li K W, Falcovitz Y H, Nagrampa J P, et al. Mechanical compression modulates proliferation of transplanted chondrocytes. J Orthop Res, 2000, 18: 374–382CrossRefGoogle Scholar
  40. 40.
    Malmi-Kakkada A N, Li X, Samanta H S, et al. Cell growth rate dictates the onset of glass to fluidlike transition and long time superdiffusion in an evolving cell colony. Phys Rev X, 2018, 8: 021025Google Scholar
  41. 41.
    Davidson L A, Koehl M, Keller R, et al. How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development, 1995, 121: 2005–2018Google Scholar
  42. 42.
    Mahaffy R E, Shih C K, MacKintosh F C, et al. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett, 2000, 85: 880–883CrossRefGoogle Scholar
  43. 43.
    Chesla S E, Selvaraj P, Zhu C. Measuring two-dimensional receptorligand binding kinetics by micropipette. Biophys J, 1998, 75: 1553–1572CrossRefGoogle Scholar
  44. 44.
    Beysens D A, Forgacs G, Glazier J A. Cell sorting is analogous to phase ordering in fluids. Proc Natl Acad Sci USA, 2000, 97: 9467–9471CrossRefGoogle Scholar
  45. 45.
    Vintermyr O K, Døskeland S O. Cell cycle parameters of adult rat hepatocytes in a defined medium. A note on the timing of nucleolar DNA replication. J Cell Physiol, 1987, 132: 12–21Google Scholar
  46. 46.
    Cheng G, Tse J, Jain R K, et al. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE, 2009, 4: e4632CrossRefGoogle Scholar
  47. 47.
    Ambrosi D, Preziosi L, Vitale G. The interplay between stress and growth in solid tumors. Mech Res Commun, 2012, 42: 87–91CrossRefGoogle Scholar
  48. 48.
    Durian D J. Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches. Phys Rev E, 1997, 55: 1739–1751CrossRefGoogle Scholar
  49. 49.
    Yilmaz M, Christofori G, Lehembre F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med, 2007, 13: 535–541CrossRefGoogle Scholar
  50. 50.
    Kaufman L J, Brangwynne C P, Kasza K E, et al. Glioma expansion in collagen I matrices: Analyzing collagen concentration-dependent growth and motility patterns. Biophys J, 2005, 89: 635–650CrossRefGoogle Scholar
  51. 51.
    Ahmadzadeh H, Webster M R, Behera R, et al. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc Natl Acad Sci USA, 2017, 114: E1617–E1626CrossRefGoogle Scholar
  52. 52.
    Jimenez Valencia A M, Wu P H, Yogurtcu O N, et al. Collective cancer cell invasion induced by coordinated contractile stresses. Oncotarget, 2015, 6: 43438–43451Google Scholar
  53. 53.
    Ulrich T A, de Juan Pardo E M, Kumar S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res, 2009, 69: 4167–4174CrossRefGoogle Scholar
  54. 54.
    Alexander N R, Branch K M, Parekh A, et al. Extracellular matrix rigidity promotes invadopodia activity. Curr Biol, 2008, 18: 1295–1299CrossRefGoogle Scholar
  55. 55.
    Parekh A, Ruppender N S, Branch K M, et al. Sensing and modulation of invadopodia across a wide range of rigidities. Biophys J, 2011, 100: 573–582CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biomechanics and Medical Engineering, AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations