Advertisement

Energy harvesting via nonlinear energy sink for whole-spacecraft

  • YeWei Zhang
  • YanNan Lu
  • LiQun ChenEmail author
Article

Abstract

This paper presents nonlinear energy sink with giant magnetostrictive-piezoelectric material for energy harvesting of the whole-spacecraft vibration reduction system. The whole-spacecraft vibration attenuation system can effectively reduce vibration and achieve self-tuning enhanced energy harvesting range. The open-circuit voltage generated at low frequency is affected by the magnetic field force, alternating magnetic field and relative displacement. In order to acquire a steady periodic solution of the energy harvesting system, a combination of the harmonic balance method and pseudo arc length continuation technique is used. The numerical outcomes are consistent with the analytical outcomes in a certain range, which also proves the accuracy and reliability of the results. The amplitude and voltage of the energy harvesting system are analyzed by parameters such as cubic stiffness, viscous damping, and external excitation acceleration. In addition, this paper provides a new idea for broadband energy harvesting.

Keywords

nonlinear energy sink giant magnetostrictive-piezoelectric material pseudo arc length continuation technique energy harvesting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chun J, Song H C, Kang M G, et al. Thermo-Magneto-Electric generator arrays for active heat recovery system. Sci Rep, 2017, 7: 41383CrossRefGoogle Scholar
  2. 2.
    Naifar S, Bradai S, Viehweger C, et al. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement, 2017, 106: 251–263CrossRefGoogle Scholar
  3. 3.
    Li P, Gao S Q, Cai H T. Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol, 2015, 21: 401–414CrossRefGoogle Scholar
  4. 4.
    Zhou S X, Zuo L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun Nonlinear Sci Numer Simul, 2018, 61: 271–284MathSciNetCrossRefGoogle Scholar
  5. 5.
    Tran N, Ghayesh M H, Arjomandi M. Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement. Int J Eng Sci, 2018, 127: 162–185MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Pan P, Zhang D B, Nie X, et al. Development of piezoelectric energy-harvesting tuned mass damper. Sci China Tech Sci, 2017, 60: 467–478CrossRefGoogle Scholar
  7. 7.
    Gatti G, Brennan M J, Tehrani M G, et al. Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator. Mech Syst Signal Process, 2016, 66–67: 785–792CrossRefGoogle Scholar
  8. 8.
    Zhao L, Tang L, Yang Y. Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater Struct, 2013, 22: 125003CrossRefGoogle Scholar
  9. 9.
    Chtiba M O, Choura S, Nayfeh A H, et al. Vibration confinement and energy harvesting in flexible structures using collocated absorbers and piezoelectric devices. J Sound Vib, 2010, 329: 261–276CrossRefGoogle Scholar
  10. 10.
    Qiu J, Tang X, Chen H, et al. A tunable broadband magnetoelectric and electromagnetic hybrid vibration energy harvester based on nanocrystalline soft magnetic film. Surf Coatings Tech, 2016, 320: 447–451CrossRefGoogle Scholar
  11. 11.
    Chu Z, Gao X, Shi W, et al. A square-framed ME composite with inherent multiple resonant peaks for broadband magnetoelectric response. Sci Bull, 2017, 62: 1177–1180CrossRefGoogle Scholar
  12. 12.
    Li P, Wen Y, Huang X, et al. Wide-bandwidth high-sensitivity magnetoelectric effect of magnetostrictive/piezoelectric composites under adjustable bias voltage. Senss Actuators A-Phys, 2013, 201: 164–171CrossRefGoogle Scholar
  13. 13.
    Patil D R, Kambale R C, Chai Y, et al. Multiple broadband magnetoelectric response in thickness-controlled Ni/[011] Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 single crystal/Ni laminates. Appl Phys Lett, 2013, 103: 052907CrossRefGoogle Scholar
  14. 14.
    Dong S, Zhai J, Li J F, et al. Small dc magnetic field response of magnetoelectric laminate composites. Appl Phys Lett, 2006, 88: 082907CrossRefGoogle Scholar
  15. 15.
    Tao K, Tang L, Wu J, et al. Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity. J Micro-electromech Syst, 2018, 27: 276–288CrossRefGoogle Scholar
  16. 16.
    Hu W, Zhang C, Wang Z L. Recent progress in piezotronics and tribotronics. Nanotechnology, 2018, 30: 042001CrossRefGoogle Scholar
  17. 17.
    Dong S, Zhai J, Xing Z, et al. Magnetoelectric laminate composites-enhanced magnetic field sensitivity and high voltage gain. In: Symposium CC—Coupled Nonlinear Phenomena Modeling and Simulation for Smart, Ferroic and Multiferroic Materials. MRS Proceedings, Volume 881. Cambridge: Cambridge University Press, 2005. 1–14Google Scholar
  18. 18.
    Palneedi H, Annapureddy V, Priya S, et al. Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators, 2016, 5: 9–31CrossRefGoogle Scholar
  19. 19.
    Dong S, Li J F, Viehland D. Longitudinal and transverse magneto-electric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Experiments. IEEE Trans Ultrason Ferroelectr Freq Control, 2004, 51: 794–799CrossRefGoogle Scholar
  20. 20.
    Dai X, Wen Y, Li P, et al. Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer. Senss Actuators A-Phys, 2009, 156: 350–358CrossRefGoogle Scholar
  21. 21.
    Chu Z, Shi H, Shi W, et al. Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites. Adv Mater, 2017, 29: 1606022CrossRefGoogle Scholar
  22. 22.
    Zhou H M, Li M H, Zhou Y, et al. Nonlinear resonant magnetoelectric coupling model for dual-peak phenomenon in magnetoelectric laminates. J Alloys Compd, 2016, 672: 292–297CrossRefGoogle Scholar
  23. 23.
    Yang J, Wen Y M, Li P, et al. A magnetoelectric-based broadband vibration energy harvester for powering wireless sensors. Sci China Tech Sci, 2011, 54: 1419–1427CrossRefzbMATHGoogle Scholar
  24. 24.
    Fang Z W, Zhang Y W, Li X, et al. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J Sound Vib, 2017, 391: 35–49CrossRefGoogle Scholar
  25. 25.
    Fang Z W, Zhang Y W, Li X, et al. Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a non-linear energy sink. J Vib Acoust, 2017, 140: 021009CrossRefGoogle Scholar
  26. 26.
    Yang K, Zhang Y W, Ding H, et al. Nonlinear energy sink for whole-spacecraft vibration reduction. J Vib Acoust, 2017, 139: 021011CrossRefGoogle Scholar
  27. 27.
    Chen J E, He W, Zhang W, et al. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Non-linear Dyn, 2018, 91: 885–904CrossRefGoogle Scholar
  28. 28.
    Ahmadabadi Z N, Khadem S E. Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J Sound Vib, 2014, 333: 4444–4457CrossRefGoogle Scholar
  29. 29.
    Li X, Zhang Y, Ding H, et al. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Appl Math Mech-Engl Ed, 2017, 38: 1019–1030MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kremer D, Liu K. A nonlinear energy sink with an energy harvester: Transient responses. J Sound Vib, 2014, 333: 4859–4880CrossRefGoogle Scholar
  31. 31.
    Kremer D, Liu K. A nonlinear energy sink with an energy harvester: Harmonically forced responses. J Sound Vib, 2017, 410: 287–302CrossRefGoogle Scholar
  32. 32.
    Remick K, Quinn D D, McFarland D M, et al. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. J Sound Vib, 2016, 370: 259–279CrossRefGoogle Scholar
  33. 33.
    Xu X, Zhang C, Han Q, et al. Hybrid energy harvesting from mechanical vibrations and magnetic field. Appl Phys Lett, 2018, 113: 013901CrossRefGoogle Scholar
  34. 34.
    Zang J, Chen L Q. Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink. Acta Mech Sin, 2017, 33: 801–822MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zang J, Zhang Y W, Ding H, et al. The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mech Syst Signal Processing, 2019, 125: 99–122CrossRefGoogle Scholar
  36. 36.
    Ding H, Zhu M H, Chen L Q. Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dyn, 2018, 92: 325–349CrossRefGoogle Scholar
  37. 37.
    Ding H, Tang Y Q, Chen L Q. Frequencies of transverse vibration of an axially moving viscoelastic beam. J Vib Control, 2017, 23: 3504–3514MathSciNetCrossRefGoogle Scholar
  38. 38.
    Parseh M, Dardel M, Ghasemi M H. Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam. Nonlinear Dyn, 2015, 81: 1981–2002MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringsShenyang Aerospace UniversityShenyangChina
  2. 2.School of ScienceHarbin Institute of TechnologyShenzhenChina

Personalised recommendations