Advertisement

Mechanism and mitigation of spontaneous Ga whisker growth on Cr2GaC

  • PeiGen Zhang
  • JianXiang Ding
  • YuShuang Liu
  • Li Yang
  • WuBian TianEmail author
  • Jian Ouyang
  • YaMei Zhang
  • ZhengMing SunEmail author
Article

Abstract

Spontaneous growth of A-element whiskers on Mn+1AXn (MAX for short) phase materials poses a barrier to their practical applications, since it casts doubts on their stability. In this study, Ga whisker growth on sintered Cr2GaC samples was investigated. The elemental source for spontaneous growth of Ga whiskers is identified as the free Ga contained in the Cr2GaC material, not the lattice atoms from Cr2GaC grains, which removes the doubts on the stability of Cr2GaC material. The growth behavior and morphologies of the Ga whiskers follow a new catalysis-based model, with cleavage planes of Cr2GaC grains involved as nucleation sites. This model explains and predicts well the growth behavior of the whiskers. The mitigation strategy based on this model is in principle simple: to prevent free Ga in Cr2GaC material or limit it to a certain level; to avoid cleavage plane of Cr2GaC grains; to achieve high density of the Cr2GaC material.

MAX phase whisker growth nucleation model mitigation strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun Z M. Progress in research and development on MAX phases: A family of layered ternary compounds. Int Mater Rev, 2011, 56: 143–166CrossRefGoogle Scholar
  2. 2.
    Sun Z M, Hashimoto H, Tian W, et al. Synthesis of the MAX phases by pulse discharge sintering. Int J Appl Ceram Technol, 2010, 7: 704–718CrossRefGoogle Scholar
  3. 3.
    Radovic M, Barsoum M W. MAX phases: Bridging the gap between metals and ceramics. Am Ceram Soc Bull, 2013, 92: 20–27Google Scholar
  4. 4.
    Barsoum M W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Weinheim: John Wiley & Sons, 2013CrossRefGoogle Scholar
  5. 5.
    Barsoum M W, El-Raghy T. The MAX phases: Unique new carbide and nitride materials. Am Scientist, 2001, 89: 334–343CrossRefGoogle Scholar
  6. 6.
    Barsoum M W. The MN+1AXN phases: A new class of solids. Prog Solid State Chem, 2000, 28: 201–281CrossRefGoogle Scholar
  7. 7.
    Eklund P, Beckers M, Jansson U, et al. The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films, 2010, 518: 1851–1878CrossRefGoogle Scholar
  8. 8.
    Barsoum M W, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res, 2011, 41: 195–227CrossRefGoogle Scholar
  9. 9.
    Zhang R, Chen G, Pei Y, et al. Thermal stability of bulk Zr2Al4C5 ceramic at elevated temperatures. Int J Refract Met Hard Mater, 2012, 30: 102–106CrossRefGoogle Scholar
  10. 10.
    Barsoum M W, Farber L. Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN. Science, 1999, 284: 937–939CrossRefGoogle Scholar
  11. 11.
    El-Raghy T. Growing metallic whiskers: Alternative interpretation. Science, 1999, 285: 1355iCrossRefGoogle Scholar
  12. 12.
    Barsoum M W, Hoffman E N, Doherty R D, et al. Driving force and mechanism for spontaneous metal whisker formation. Phys Rev Lett, 2004, 93: 206104CrossRefGoogle Scholar
  13. 13.
    Sun Z M, Gupta S, Ye H, et al. Spontaneous growth of freestanding Ga nanoribbons from Cr2GaC surfaces. J Mater Res, 2005, 20: 2618–2621CrossRefGoogle Scholar
  14. 14.
    Liu Y, Zhang P, Ling C, et al. Spontaneous Sn whisker formation on Ti2SnC. J Mater Sci-Mater Electron, 2017, 28: 5788–5795CrossRefGoogle Scholar
  15. 15.
    Sun Z M, Barsoum M W. Alternate mechanism for the spontaneous formation of freestanding Ga nanoribbons on Cr2GaC surfaces. J Mater Res, 2006, 21: 1629–1631CrossRefGoogle Scholar
  16. 16.
    Zhang P, Shen L W, Ouyang J, et al. Room temperature mushrooming of gallium wires and its growth mechanism. J Alloys Compd, 2015, 619: 488–497CrossRefGoogle Scholar
  17. 17.
    Chen J S, Ye C H, Chen J M, et al. Sn whiskers mitigation by refining grains of Cu substrate during the room temperature exposure. Mater Lett, 2015, 161: 201–204CrossRefGoogle Scholar
  18. 18.
    Cheng Y T, Weiner A M, Wong C A, et al. Stress-induced growth of bismuth nanowires. Appl Phys Lett, 2002, 81: 3248–3250CrossRefGoogle Scholar
  19. 19.
    Zhang P, Zhang Y, Sun Z. Spontaneous growth of metal whiskers on surfaces of solids: A review. J Mater Sci Tech, 2015, 31: 675–698CrossRefGoogle Scholar
  20. 20.
    Lindborg U. A model for the spontaneous growth of zinc, cadmium and tin whiskers. Acta Metall, 1976, 24: 181–186CrossRefGoogle Scholar
  21. 21.
    Franks J. Metal whiskers. Nature, 1956, 177: 984CrossRefGoogle Scholar
  22. 22.
    Franks J. Growth of whiskers in the solid phase. Acta Metall, 1958, 6: 103–109CrossRefGoogle Scholar
  23. 23.
    Boguslavsky I, Bush P. Recrystallization principles applied to whisker growth in tin. In: Proceedings of 2003 Achieving Professional Excellence Conference. Anaheim, 2003. S12–14Google Scholar
  24. 24.
    Kakeshita T, Shimizu K, Kawanaka R, et al. Grain size effect of electro-plated tin coatings on whisker growth. J Mater Sci, 1982, 17: 2560–2566CrossRefGoogle Scholar
  25. 25.
    Osenbach J W. Creep and its effect on Sn whisker growth. J Appl Phys, 2009, 106: 094903CrossRefGoogle Scholar
  26. 26.
    Buchovecky E, Jadhav N, Bower A F, et al. Finite element modeling of stress evolution in Sn films due to growth of the Cu6Sn5 inter-metallic compound. J Electron Mater, 2009, 38: 2676–2684CrossRefGoogle Scholar
  27. 27.
    Sun Z M, Hashimoto H, Barsoum M W. On the effect of environment on spontaneous growth of lead whiskers from commercial brasses at room temperature. Acta Mater, 2007, 55: 3387–3396CrossRefGoogle Scholar
  28. 28.
    Vasko A C, Grice C R, Kostic A D, et al. Evidence of electric-field-accelerated growth of tin whiskers. MRC, 2015, 5: 619–622CrossRefGoogle Scholar
  29. 29.
    Karpov V G. Electrostatic theory of metal whiskers. Phys Rev Appl, 2014, 1: 044001CrossRefGoogle Scholar
  30. 30.
    Hoffman E N, Barsoum M W, Wang W, et al. On the spontaneous growth of soft metallic whiskers. In: Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts, 2005. Chicago: IEEE, 2005. 121–126Google Scholar
  31. 31.
    Sun Z M, Barsoum M W. Spontaneous room temperature extrusion of Pb nano-whiskers from leaded brass surfaces. J Mater Res, 2005, 20: 1087–1089CrossRefGoogle Scholar
  32. 32.
    Li C F, Liu Z Q, Shang J K. The effects of temperature and humidity on the growth of tin whisker and hillock from Sn5Nd alloy. J Alloys Compd, 2013, 550: 231–238CrossRefGoogle Scholar
  33. 33.
    Li C F, Liu Z Q. Microstructure and growth mechanism of tin whiskers on RESn3 compounds. Acta Mater, 2013, 61: 589–601CrossRefGoogle Scholar
  34. 34.
    Lee B Z, Lee D N. Spontaneous growth mechanism of tin whiskers. Acta Mater, 1998, 46: 3701–3714CrossRefGoogle Scholar
  35. 35.
    Galyon G T, Xu C, Lai S, et al. The integrated theory of whisker formation: A stress analysis. In: Proceedings Electronic Components and Technology, 2005. Lake Buena Vista: IEEE, 2005. 421–428Google Scholar
  36. 36.
    Galyon G T, Palmer L. An integrated theory of whisker formation: The physical metallurgy of whisker formation and the role of internal stresses. IEEE Trans Electron Packag Manufact, 2005, 28: 17–30CrossRefGoogle Scholar
  37. 37.
    Jadhav N, Wasserman J, Pei F, et al. Stress relaxation in Sn-based films: Effects of Pb alloying, grain size, and microstructure. J Electron Mater, 2012, 41: 588–595CrossRefGoogle Scholar
  38. 38.
    Shin J W, Chason E. Stress behavior of electroplated Sn films during thermal cycling. J Mater Res, 2009, 24: 1522–1528CrossRefGoogle Scholar
  39. 39.
    Chen K, Wilcox G D. Observations of the spontaneous growth of tin whiskers on tin-manganese alloy electrodeposits. Phys Rev Lett, 2005, 94: 066104CrossRefGoogle Scholar
  40. 40.
    Jia L X, Wang Y X, Ou X D, et al. Decohesion of Ti3SiC2 induced by He impurities. Mater Lett, 2012, 83: 23–26CrossRefGoogle Scholar
  41. 41.
    Zhang H F, Yao B D, Shi L Q, et al. Roles of silicon-layer in Ti3SiC2 materials response to helium irradiation: New insights from first-principles calculation. Acta Mater, 2015, 97: 50–57CrossRefGoogle Scholar
  42. 42.
    Sun Z M, Barsoum M W, Zhang Y, et al. On equilibrium Ga inter-granular films in Cr2 GaC. Mater Res Lett, 2013, 1: 109–113CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • PeiGen Zhang
    • 1
  • JianXiang Ding
    • 1
  • YuShuang Liu
    • 1
  • Li Yang
    • 1
  • WuBian Tian
    • 1
    Email author
  • Jian Ouyang
    • 1
  • YaMei Zhang
    • 2
  • ZhengMing Sun
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory of Construction Materials, School of Materials Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations