Advertisement

A grain level model for deformation and failure of ultrafine-grained tungsten

  • Ke Ren
  • LiRong Chen
  • YangYang Cheng
  • JianXiang Wang
  • HuiLing DuanEmail author
Article Special Topic: Current Progress in Solid Mechanics and Physical Mechanics
  • 4 Downloads

Abstract

Ultrafine-grained tungsten (UFG W) produced by severe plastic deformation technology has many potential applications due to its high strength and ductility. To reveal the mechanism for the high ductility of UFG W, the deformation and failure behaviors of coarse-grained tungsten (CG W) and UFG W have been compared based on a three-dimensional crystal plastic finite element method (CPFEM) simulation. Cohesive element method has been utilized to model the behavior of grain boundaries (GBs). Both plastic deformation in grain interiors and grain boundary opening have been observed in different periods of deformation in UFG W. It is concluded that the high GB density and elongated microstructure in the UFG W suppress crack propagation, decrease the stress concentration and impurity concentration on GBs, therefore enhance the ductility of the material.

ultrafine grain (UFG) tungsten crystal plasticity interface failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dümmer T, Lasalvia J C, Ravichandran G, et al. Effect of strain rate on plastic flow and failure in polycrystalline tungsten. Acta Mater, 1998, 46: 6267–6290CrossRefGoogle Scholar
  2. 2.
    Borovikov V, Tang X Z, Perez D, et al. Influence of point defects on grain boundary mobility in bcc tungsten. J Phys-Condens Matter, 2013, 25: 035402CrossRefGoogle Scholar
  3. 3.
    Xie Z M, Liu R, Zhang T, et al. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure. Mater Des, 2016, 107: 144–152CrossRefGoogle Scholar
  4. 4.
    Riesch J, Almanstötter J, Coenen J W, et al. Properties of drawn W wire used as high performance fibre in tungsten fibre-reinforced tungsten composite. In: Proceedings of the 17th European Conference on Composite Materials. Munich, 2016CrossRefGoogle Scholar
  5. 5.
    Reiser J, Hoffmann J, Jäntsch U, et al. Ductilisation of tungsten (W): On the increase of strength AND room-temperature tensile ductility through cold-rolling. Int J Refractory Met Hard Mater, 2017, 64: 261–278CrossRefGoogle Scholar
  6. 6.
    Zhao P, Riesch J, Höschen T, et al. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments. Int J Refractory Met Hard Mater, 2017, 68: 29–40CrossRefGoogle Scholar
  7. 7.
    Zinovev A, Terentyev D, Dubinko A, et al. Constitutive law for thermally-activated plasticity of recrystallized tungsten. J Nucl Mater, 2017, 496: 325–332CrossRefGoogle Scholar
  8. 8.
    Wei Q, Zhang H, Schuster B, et al. Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Mater, 2006, 54: 4079–4089CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Ganeev AV, Wang J T, et al. Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity. Mater Sci Eng-A, 2009, 503: 37–40CrossRefGoogle Scholar
  10. 10.
    Hao T, Fan Z Q, Zhang T, et al. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing. J Nucl Mater, 2014, 455: 595–599CrossRefGoogle Scholar
  11. 11.
    Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten-A review. Int J Refractory Met Hard Mater, 2018, 75: 170–183CrossRefGoogle Scholar
  12. 12.
    Chen Z, Niu L L, Wang Z, et al. A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain. Acta Mater, 2018, 147: 100–112CrossRefGoogle Scholar
  13. 13.
    El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Sci Rep, 2014, 4: 4716CrossRefGoogle Scholar
  14. 14.
    El-Atwani O, Hinks J A, Greaves G, et al. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Mater Res Lett, 2017, 5: 343–349CrossRefGoogle Scholar
  15. 15.
    Wei Y J, Anand L. Grain-boundary sliding and separation in polycrystalline metals: Application to nanocrystalline fcc metals. J Mech Phys Solids, 2004, 52: 2587–2616CrossRefzbMATHGoogle Scholar
  16. 16.
    Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten. Mater Sci Eng-A, 2007, 467: 33–43CrossRefGoogle Scholar
  17. 17.
    Asaro R J. Micromechanics of crystals and polycrystals. Adv Appl Mech, 1983, 23: 1–115CrossRefGoogle Scholar
  18. 18.
    Fu H H, Benson D J, André Meyers M. Computational description of nanocrystalline deformation based on crystal plasticity. Acta Mater, 2004, 52: 4413–4425CrossRefGoogle Scholar
  19. 19.
    Kadkhodapour J, Ziaei-Rad S, Karimzadeh F. Finite-element modeling of rate dependent mechanical properties in nanocrystalline materials. Comput Mater Sci, 2009, 45: 1113–1124CrossRefGoogle Scholar
  20. 20.
    Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids, 1994, 42: 1397–1434CrossRefzbMATHGoogle Scholar
  21. 21.
    Xu X P, Needleman A. Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line. Int J Fract, 1995, 74: 253–275CrossRefGoogle Scholar
  22. 22.
    Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Engng, 1999, 44: 1267–1282CrossRefzbMATHGoogle Scholar
  23. 23.
    Espinosa H D, Zavattieri P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation. Mech Mater, 2003, 35: 333–364CrossRefGoogle Scholar
  24. 24.
    Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids, 1966, 14: 95–102CrossRefGoogle Scholar
  25. 25.
    Hutchinson J W. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc A-Math Phys Eng Sci, 1976, 348: 101–127CrossRefzbMATHGoogle Scholar
  26. 26.
    Lim H, Battaile C C, Carroll J D, et al. A physically based model of temperature and strain rate dependent yield in BCC metals: Implementation into crystal plasticity. J Mech Phys Solids, 2015, 74: 80–96CrossRefGoogle Scholar
  27. 27.
    Terentyev D, Xiao X, Dubinko A, et al. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation. J Mech Phys Solids, 2015, 85: 1–15CrossRefGoogle Scholar
  28. 28.
    Hall E O. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B, 1951, 64: 747–753CrossRefGoogle Scholar
  29. 29.
    Chen L R, Xiao X Z, Yu L, et al. Texture evolution and mechanical behaviour of irradiated face-centred cubic metals. Proc R Soc A, 2018, 474: 20170604MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lowrie R, Gonas A M. Single-crystal elastic properties of tungsten from 24°C to 1800°C. J Appl Phys, 2015, 38: 4505–4509CrossRefGoogle Scholar
  31. 31.
    Beyerlein I J, Tomé C N. A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast, 2008, 24: 867–895CrossRefzbMATHGoogle Scholar
  32. 32.
    Xu X P, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci Eng, 1993, 1: 111–132CrossRefGoogle Scholar
  33. 33.
    Rose J H, Ferrante J, Smith J R. Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett, 1981, 47: 675–678CrossRefGoogle Scholar
  34. 34.
    Quey R, Dawson P R, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Comput Methods Appl Mech Eng, 2011, 200: 1729–1745CrossRefzbMATHGoogle Scholar
  35. 35.
    Raabe D. Recovery and Recrystallization: Phenomena, Physics, Models, Simulation. In: Physical Metallurgy. 5th ed. Amsterdam: Elsevier, 2015Google Scholar
  36. 36.
    Benabou L, Sun Z. Analytical homogenization modeling and computational simulation of intergranular fracture in polycrystals. Int J Fract, 2015, 193: 59–75CrossRefGoogle Scholar
  37. 37.
    Lassner E, Schubert W D. Tungsten-Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers, 1998Google Scholar

Copyright information

© © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ke Ren
    • 1
  • LiRong Chen
    • 1
    • 2
  • YangYang Cheng
    • 1
  • JianXiang Wang
    • 1
  • HuiLing Duan
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of EngineeringPeking UniversityBeijingChina
  2. 2.Key Laboratory of High Energy Density Physics Simulation, Center of Applied Physics and Technology, BIC-ESAT, and IFSA, Collaborative Innovation Center of MoEPeking UniversityBeijingChina

Personalised recommendations