Advertisement

Power law creep and relaxation with the atomic force microscope: Determining viscoelastic property of living cells

  • Yang Bu
  • Long LiEmail author
  • JiZeng WangEmail author
Article
  • 11 Downloads

Abstract

We have proposed a method to determine the deformation creep and stress relaxation of living cells by using the atomic force microscope (AFM). Based on this method, we have measured the creep and relaxation trajectories of the undifferentiated (HGC-27) and poorly differentiated (AGS) human gastric cancer cells, which were then used to determine their linear viscoelastic properties. We found that the AGS cells are linear viscoelastic materials with the power law creep compliance and relaxation modulus. In contrast, the HGC-27 cells are nonlinear since their measured creep and relaxation behaviours fail to satisfy a verification relation derived based on the linear viscoelastic theory. This fact implies that most traditional methods are not appropriate in determining viscoelastic properties of living cells by simply assuming linear constitutive relation and using classical model of linear springs and dashpots. The combination of suggested power law expression and AFM indentation measurements on the creep compliance and relaxation modulus provides a unique way in determining the viscoelastic properties of living cells.

Keywords

atomic force microscope linear viscoelasticity creep relaxation power law living cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lim C T. Single cell mechanics study of the human disease malaria. JBSE, 2006, 1: 82–92CrossRefGoogle Scholar
  2. 2.
    Lee G Y H, Lim C T. Biomechanics approaches to studying human diseases. Trends Biotech, 2007, 25: 111–118CrossRefGoogle Scholar
  3. 3.
    Lautenschläger F, Paschke S, Schinkinger S, et al. The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Natl Acad Sci USA, 2009, 106: 15696–15701CrossRefGoogle Scholar
  4. 4.
    Nelson C M, Jean R P, Tan J L, et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA, 2005, 102: 11594–11599CrossRefGoogle Scholar
  5. 5.
    Qian J, Wang J, Gao H. Lifetime and strength of adhesive molecular bond clusters between elastic media. Langmuir, 2008, 24: 1262–1270CrossRefGoogle Scholar
  6. 6.
    Kumar S, Maxwell I Z, Heisterkamp A, et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. BioPhys J, 2006, 90: 3762–3773CrossRefGoogle Scholar
  7. 7.
    Huang C, Butler P J, Tong S, et al. Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett, 2013, 13: 1611–1615CrossRefGoogle Scholar
  8. 8.
    Wang J, Li L. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles. J R Soc Interface, 2015, 12: 20141023CrossRefGoogle Scholar
  9. 9.
    Wang J, Li L, Zhou Y. Creep effect on cellular uptake of viral particles. Chin Sci Bull, 2014, 59: 2277–2281CrossRefGoogle Scholar
  10. 10.
    Lekka M, Laidler P, Ignacak J, et al. The effect of chitosan on stiffness and glycolytic activity of human bladder cells. BioChim Biophysica Acta (BBA)-Mol Cell Res, 2001, 1540: 127–136CrossRefGoogle Scholar
  11. 11.
    Kuznetsova T G, Starodubtseva M N, Yegorenkov N I, et al. Atomic force microscopy probing of cell elasticity. Micron, 2007, 38: 824–833CrossRefGoogle Scholar
  12. 12.
    Li Q S, Lee G Y H, Ong C N, et al. AFM indentation study of breast cancer cells. Biochem BioPhys Res Commun, 2008, 374: 609–613CrossRefGoogle Scholar
  13. 13.
    Wang H, Wilksch J J, Strugnell R A, et al. Role of capsular polysaccharides in biofilm formation: An AFM nanomechanics study. ACS Appl Mater Interfaces, 2015, 7: 13007–13013CrossRefGoogle Scholar
  14. 14.
    Puig-De-Morales M, Grabulosa M, Alcaraz J, et al. Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J Appl Physiol, 2001, 91: 1152–1159CrossRefGoogle Scholar
  15. 15.
    Shin D, Athanasiou K. Cytoindentation for obtaining cell biomechanical properties. J Orthop Res, 1999, 17: 880–890CrossRefGoogle Scholar
  16. 16.
    Titushkin I, Cho M. Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. BioPhys J, 2006, 90: 2582–2591CrossRefGoogle Scholar
  17. 17.
    Desprat N, Richert A, Simeon J, et al. Creep function of a single living cell. BioPhys J, 2005, 88: 2224–2233CrossRefGoogle Scholar
  18. 18.
    Ward K A, Li W I, Zimmer S, et al. Viscoelastic properties of transformed cells: Role in tumor cell progression and metastasis formation. Biorheology, 1991, 28: 301–313CrossRefGoogle Scholar
  19. 19.
    Moreno-Flores S, Benitez R, Vivanco M M, et al. Stress relaxation and creep on living cells with the atomic force microscope: A means to calculate elastic moduli and viscosities of cell components. Nanotechnology, 2010, 21: 445101CrossRefGoogle Scholar
  20. 20.
    Hecht F M, Rheinlaender J, Schierbaum N, et al. Imaging viscoelastic properties of live cells by AFM: Power-law rheology on the nanoscale. Soft Matter, 2015, 11: 4584–4591CrossRefGoogle Scholar
  21. 21.
    Fabry B, Maksym G N, Butler J P, et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E, 2003, 68: 041914CrossRefGoogle Scholar
  22. 22.
    Radmacher M, Fritz M, Kacher C M, et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. BioPhys J, 1996, 70: 556–567CrossRefGoogle Scholar
  23. 23.
    Findley W N, Lai J S, Onaran K. Creep and Relaxation of Nonlinear Viscoelastic Materials: With An Introduction to Linear Viscoelasticity. Amsterdam: North-Holland Publishing, 1976zbMATHGoogle Scholar
  24. 24.
    Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985CrossRefzbMATHGoogle Scholar
  25. 25.
    Lee E H, Radok J R M. The contact problem for viscoelastic bodies. J Appl Mech, 1960, 27: 395MathSciNetzbMATHGoogle Scholar
  26. 26.
    Oyen M L. Spherical indentation creep following ramp loading. J Mater Res, 2005, 20: 2094–2100CrossRefGoogle Scholar
  27. 27.
    Kollmannsberger P, Fabry B. Linear and nonlinear rheology of living cells. Annu Rev Mater Res, 2011, 41: 75–97CrossRefGoogle Scholar
  28. 28.
    Maloney J M, Nikova D, Lautenschläger F, et al. Mesenchymal stem cell mechanics from the attached to the suspended state. BioPhys J, 2010, 99: 2479–2487CrossRefGoogle Scholar
  29. 29.
    Cai P G, Mizutani Y, Tsuchiya M, et al. Quantifying cell-to-cell variation in power-law rheology. BioPhys J, 2013, 105: 1093–1102CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and MechanicsLanzhou UniversityLanzhouChina

Personalised recommendations