Advertisement

A frequency domain reliability analysis method for electromagnetic problems based on univariate dimension reduction method

  • MengHao Ping
  • Xu HanEmail author
  • Chao Jiang
  • JianFeng Zhong
  • XiaoYa Xiao
  • ZhiLiang Huang
  • ZhongHua Wang
Article Special Topic: Current Progress in Solid Mechanics and Physical Mechanics
  • 2 Downloads

Abstract

In this paper, a class of electromagnetic field frequency domain reliability problem is first defined. The frequency domain reliability refers to the probability that an electromagnetic performance indicator can meet the intended requirements within a specific frequency band, considering the uncertainty of structural parameters and frequency-variant electromagnetic parameters. And then a frequency domain reliability analysis method based on univariate dimension reduction method is proposed, which provides an effective calculation tool for electromagnetic frequency domain reliability. In electromagnetic problems, performance indicators usually vary with frequency. The method firstly discretizes the frequency-variant performance indicator function into a series of frequency points’ functions, and then transforms the frequency domain reliability problem into a series system reliability problem of discrete frequency points’ functions. Secondly, the univariate dimension reduction method is introduced to solve the probability distribution functions and correlation coefficients of discrete frequency points’ functions in the system. Finally, according to the above calculation results, the series system reliability can be solved to obtain the frequency domain reliability, and the cumulative distribution function of the performance indicator can also be obtained. In this study, Monte Carlo simulation is adopted to demonstrate the validity of the frequency domain reliability analysis method. Three examples are investigated to demonstrate the accuracy and efficiency of the proposed method.

electromagnetic field frequency domain reliability system reliability random process discretization univariate dimension reduction method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jung J. A compact broadband antenna with an L-shaped notch. IEICE Trans Commun, 2006, E89-B: 1968–1971CrossRefGoogle Scholar
  2. 2.
    Abbas-Azimi M, Mazlumi F, Behnia F. Design of broadband constant-beamwidth conical corrugated-horn antennas [Antenna Designer’s Notebook]. IEEE Antennas Propag Magazine, 2010, 51: 109–114CrossRefGoogle Scholar
  3. 3.
    Yang F, Zhou L, Han W, et al. Bandwidth enhancement for single-feed circularly polarised microstrip antenna with epsilon-negative transmission line-based annular ring. Electron Lett, 2015, 51: 1475–1476CrossRefGoogle Scholar
  4. 4.
    Klymyshyn D M, Shafai L, Rashidian A. Tall microstrip transmission lines for dielectric resonator antenna applications. IET Microw Antennas Propag, 2014, 8: 112–124CrossRefGoogle Scholar
  5. 5.
    Choo H, Ling H. Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm. IEE Proc Microw Antennas Propag, 2003, 150: 137–142CrossRefGoogle Scholar
  6. 6.
    Mohamadi Monavar F, Komjani N, Mousavi P. Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern. Antennas Wirel Propag Lett, 2011, 10: 1369–1372CrossRefGoogle Scholar
  7. 7.
    Abbas-Azimi M, Arazm F, Faraji-Dana R. Design and optimisation of a high-frequency EMC wideband horn antenna. IET Microw Antennas Propag, 2007, 1: 580CrossRefGoogle Scholar
  8. 8.
    Pourahmadazar J, Rafii V. Broadband circularly polarised slot antenna array for L- and S-band applications. Electron Lett, 2012, 48: 542–543CrossRefGoogle Scholar
  9. 9.
    El-makadema A, Rashid L, Brown A K. Geometry design optimization of large-scale broadband antenna array systems. IEEE Trans Antennas Propagat, 2014, 62: 1673–1680MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang P, Li Y, Peng Y, et al. Non-uniform linear antenna array design and optimization for millimeter-wave communications. IEEE Trans Wireless Commun, 2016, 15: 7343–7356CrossRefGoogle Scholar
  11. 11.
    Okabe H, Caloz C, Itoh T. A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section. IEEE Trans Microwave Theor Techn, 2004, 52: 798–804CrossRefGoogle Scholar
  12. 12.
    Kim D, Kim H, Eo Y. A novel transmission line characterisation based on measurement data reconfirmation. Int J Electron, 2014, 101: 479–491CrossRefGoogle Scholar
  13. 13.
    You F, Hu Z, Ding X, et al. 2–4 GHz wideband power amplifier with ultra-flat gain and high PAE. Electron Lett, 2013, 49: 326CrossRefGoogle Scholar
  14. 14.
    Jiang C, Huang X P, Han X, et al. A time-variant reliability analysis method based on stochastic process discretization. J Mech Des, 2014, 136: 091009CrossRefGoogle Scholar
  15. 15.
    Rackwitz R, Flessler B. Structural reliability under combined random load sequences. Comput Struct, 1978, 9: 489–494CrossRefzbMATHGoogle Scholar
  16. 16.
    Hasofer A M. Exact and invariant second-moment code format. J Eng Mech Division, 1974, 100: 111–121Google Scholar
  17. 17.
    Hohenbichler M, Rackwitz R. Zon-normal dependent vectors in structural safety. J Eng Mech Division, 1981, 107: 1227–1238Google Scholar
  18. 18.
    Breitung K. Asymptotic approximations for multinormal integrals. J Eng Mech, 1984, 110: 357–366CrossRefzbMATHGoogle Scholar
  19. 19.
    Cai G Q, Elishakoff I. Refined second-order reliability analysis. Struct Saf, 1994, 14: 267–276CrossRefGoogle Scholar
  20. 20.
    Rahman S, Xu H. A univariate dimension-reduction method for multidimensional integration in stochastic mechanics. Probab Eng Mech, 2004, 19: 393–408CrossRefGoogle Scholar
  21. 21.
    Xu H, Rahman S. A generalized dimension-reduction method for multi-dimensional integration in random mechanics. Int J Numer Methods Eng, 2006, 65: 2292CrossRefGoogle Scholar
  22. 22.
    Huang B, Du X. Uncertainty analysis by dimension reduction integration and saddlepoint approximations. J Mech Des, 2006, 128: 26CrossRefGoogle Scholar
  23. 23.
    Andrieu-Renaud C, Sudret B, Lemaire M. The PHI2 method: A way to compute time-variant reliability. Reliability Eng Syst Saf, 2004, 84: 75–86CrossRefGoogle Scholar
  24. 24.
    Jaynes E T. Information theory and statistical mechanics. Phys Rev, 1957, 106: 620–630MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hohenbichler M, Rackwitz R. First-order concepts in system reliability. Struct Saf, 1982, 1: 177–188CrossRefGoogle Scholar
  26. 26.
    Siddall J N, Diab Y. The use in probabilistic design of probability curves generated by maximizing the shannon entropy function constrained by moments. J Eng Industry, 1975, 97: 843CrossRefGoogle Scholar
  27. 27.
    Stump D, Pumplin J, Brock R, et al. Uncertainties of predictions from parton distribution functions i: the lagrange multiplier method. Phys Rev D Part Fields, 2001, 65: 360–363CrossRefGoogle Scholar
  28. 28.
    Durante F, Sempi C. Copula Theory: An Introduction. In: Copula Theory and Its Applications. Berlin, Heidelberg: Springer, 2010. 3–31CrossRefGoogle Scholar
  29. 29.
    Nadarajah S. On the approximations for multinormal integration. Comput Indust Eng, 2008, 54: 705–708CrossRefGoogle Scholar
  30. 30.
    Pandey M D. An effective approximation to evaluate multinormal integrals. Struct Saf, 1998, 20: 51–67CrossRefGoogle Scholar
  31. 31.
    Genz A, Bretz F. Computation of multivariate normal and t probabilities. J Statist Software, 2010, 33: 1641zbMATHGoogle Scholar
  32. 32.
    Genz A. Numerical computation of multivariate normal probabilities. J Comput Graph Stat, 1992, 1: 141–149Google Scholar
  33. 33.
    Tang L K, Melchers R E. Improved approximation for multinormal integral. Struct Saf, 1986, 4: 81–93CrossRefGoogle Scholar
  34. 34.
    Li C, Der Kiureghian A. Optimal discretization of random fields. J Eng Mech, 1993, 119: 1136–1154CrossRefGoogle Scholar
  35. 35.
    Yeo S K, Chun J H, Kwon Y S. A 3-D X-band T/R module package with an anodized aluminum multilayer substrate for phased array radar applications. IEEE Trans Adv Packag, 2011, 33: 883–891CrossRefGoogle Scholar
  36. 36.
    Porras M J P, Bertuch T, Loecker C, et al. An AESA antenna comprising an RF feeding network with strongly coupled antenna ports. IEEE Trans Antennas Propag, 2015, 63: 182–194MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ahn C S, Chon S M, Kim S J, et al. Accurate characterization of T/R modules with consideration of amplitude/phase cross effect in AESA antenna unit. ETRI J, 2016, 38: 417–424Google Scholar
  38. 38.
    Wang Z H, Jiang C, Ruan X X, et al. Uncertainty propagation analysis of T/R modules. Int J Comput Methods, 2018, 38: 1850105CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • MengHao Ping
    • 1
  • Xu Han
    • 1
    Email author
  • Chao Jiang
    • 1
  • JianFeng Zhong
    • 2
  • XiaoYa Xiao
    • 1
  • ZhiLiang Huang
    • 1
  • ZhongHua Wang
    • 1
  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle EngineeringHunan UniversityChangshaChina
  2. 2.Nanjing Research Institute of Electronics TechnologyNanjingChina

Personalised recommendations