Advertisement

A study of indentation scaling relationships of elastic-perfectly plastic solids with an inclusion near the conical indenter tip

  • ZhiJie Yu
  • YueGuang WeiEmail author
Article Special Topic: Current Progress in Solid Mechanics and Physical Mechanics
  • 3 Downloads

Abstract

Indentation hardness is found to be related to indentation depth when indentation test is applied on homogeneous materials under small indentation depth, which shows strong size effect in the indentation. While in contrast, indentation hardness has a very limited relationship with indentation depth when it is large, showing distinct scaling relationships between hardness and material properties. Previous studies on scaling relationships under deep indentation condition of elastic-perfectly plastic homogeneous materials have been carried out systematically by finite element analysis. In this paper, a heterogeneous material, particle-reinforced matrix composite is detailed studied to investigate its scaling relationships under deep indentation with different particle positions and material properties by finite element analysis.

conical indentation elastic-perfect plastic grain composite scaling relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stilwell N A, Tabor D. Elastic recovery of conical indentations. Proc Phys Soc, 1961, 78: 169–179MathSciNetCrossRefGoogle Scholar
  2. 2.
    Marshall D B. Mechanisms of failure from surface flaws in mixed-mode loading. J Am Ceramic Soc, 1984, 67: 110–116CrossRefGoogle Scholar
  3. 3.
    Bhattacharya A K, Nix W D. Finite element simulation of indentation experiments. Int J Solids Struct, 1988, 24: 881–891CrossRefGoogle Scholar
  4. 4.
    Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7: 1564–1583CrossRefGoogle Scholar
  5. 5.
    Cheng Y T, Cheng C M. Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters? J Mater Res, 1999, 14: 3493–3496CrossRefGoogle Scholar
  6. 6.
    Cheng Y T, Cheng C M. Scaling relationships in conical indentation of elastic-perfectly plastic solids. Int J Solids Struct, 1999, 36: 1231–1243CrossRefzbMATHGoogle Scholar
  7. 7.
    Cheng Y T, Cheng C M. What is indentation hardness? Surf Coatings Tech, 2000, 133–134: 417–424CrossRefGoogle Scholar
  8. 8.
    Shen Y L, Guo Y L. Indentation modelling of heterogeneous materials. Model Simul Mater Sci Eng, 2001, 9: 391–398CrossRefGoogle Scholar
  9. 9.
    Shen Y L, Williams J J, Piotrowski G, et al. Correlation between tensile and indentation behavior of particle-reinforced metal matrix composites: An experimental and numerical study. Acta Mater, 2001, 49: 3219–3229CrossRefGoogle Scholar
  10. 10.
    Ege E S, Shen Y L. Effects of inclusions and porosity on the indentation response. MRS Proc, 2002, 750: Y6.2CrossRefGoogle Scholar
  11. 11.
    Begley M R, Hutchinson J W. The mechanics of size-dependent indentation. J Mech Phys Solids, 1998, 46: 2049–2068CrossRefzbMATHGoogle Scholar
  12. 12.
    Nix W D, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Solids, 1998, 46: 411–425CrossRefzbMATHGoogle Scholar
  13. 13.
    Wei Y, Wang X, Wu X, et al. Theoretical and experimental researches of size effect in micro-indentation test. Sci China Ser A-Math, 2001, 44: 74–82CrossRefGoogle Scholar
  14. 14.
    Wei Y, Wang X, Zhao M. Size effect measurement and characterization in nanoindentation test. J Mater Res, 2004, 19: 208–217CrossRefGoogle Scholar
  15. 15.
    Wei Y, Shu S, Du Y, et al. Size, geometry and nonuniformity effects of surface-nanocrystalline aluminum in nanoindentation test. Int J Plast, 2005, 21: 2089–2106CrossRefzbMATHGoogle Scholar
  16. 16.
    Wei Y, Hutchinson J W. Hardness trends in micron scale indentation. J Mech Phys Solids, 2003, 51: 2037–2056CrossRefzbMATHGoogle Scholar
  17. 17.
    Chen S H, Liu L, Wang T C. Small scale, grain size and substrate effects in nano-indentation experiment of film-substrate systems. Int J Solids Struct, 2007, 44: 4492–4504CrossRefGoogle Scholar
  18. 18.
    Huang Y, Xue Z, Gao H, et al. A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J Mater Res, 2011, 15: 1786–1796CrossRefGoogle Scholar
  19. 19.
    Zhang T Y, Xu W H, Zhao M H. The role of plastic deformation of rough surfaces in the size-dependent hardness. Acta Mater, 2004, 52: 57–68CrossRefGoogle Scholar
  20. 20.
    Sreeram A, Patel N G, Venkatanarayanan R I, et al. Nanomechanical properties of poly(para-phenylene vinylene) determined using quasi-static and dynamic nanoindentation. Polymer Testing, 2014, 37: 86–93CrossRefGoogle Scholar
  21. 21.
    Wang T, Zhang C, Chen S. Mechanical behaviors of carbon nanoscrolls. J Nanosci Nanotech, 2013, 13: 1136–1140CrossRefGoogle Scholar
  22. 22.
    Sun L, Ma D, Wang L, et al. Determining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique. Eng Fract Mech, 2018, 197: 151–159CrossRefGoogle Scholar
  23. 23.
    Liu M, Tieu K A, Zhou K, et al. Indentation analysis of mechanical behaviour of torsion-processed single-crystal copper by crystal plasticity finite-element method modelling. Philos Mag, 2016, 96: 261–273CrossRefGoogle Scholar
  24. 24.
    Bermudo C, Sevilla L, Martín F, et al. Hardening effect analysis by modular upper bound and finite element methods in indentation of aluminum, steel, titanium and superalloys. Materials, 2017, 10: 556CrossRefGoogle Scholar
  25. 25.
    Jia H, Wu Z, Liu N. Effect of nano-ZnO with different particle size on the performance of PVDF composite membrane. Plastics Rubber Compos, 2017, 46: 1–7CrossRefGoogle Scholar
  26. 26.
    Sivaraj M, Selvakumar N. Effect of particle size on the deformation behaviour of sintered Al-TiC nano composites. Trans Ind Inst Met, 2017, 70: 2093–2102CrossRefGoogle Scholar
  27. 27.
    Wang C, Wang H, Xue S, et al. Size effect affected mechanical properties and formability in micro plane strain deformation process of pure nickel. J Mater Process Tech, 2018, 258: 319–325CrossRefGoogle Scholar
  28. 28.
    Taloni A, Vodret M, Costantini G, et al. Size effects on the fracture of microscale and nanoscale materials. Nat Rev Mater, 2018, 3: 211–224CrossRefGoogle Scholar
  29. 29.
    Krämer L, Maier-Kiener V, Champion Y, et al. Activation volume and energy of bulk metallic glasses determined by nanoindentation. Mater Des, 2018, 155: 116–124CrossRefGoogle Scholar
  30. 30.
    Rindler A, Pöll C, Hansmann C, et al. Moisture related elastic and viscoelastic behaviour of wood adhesives by means of in-situ nanoindentation. Int J Adhes Adhes, 2018, 85: 123–129CrossRefGoogle Scholar
  31. 31.
    Vgenopoulos D, Sweeney J, Grant C A, et al. Nanoindentation analysis of oriented polypropylene: Influence of elastic properties in tension and compression. Polymer, 2018, 151: 197–207CrossRefGoogle Scholar
  32. 32.
    Kan Q, Yan W, Kang G, et al. Oliver-Pharr indentation method in determining elastic moduli of shape memory alloys—A phase transformable material. J Mech Phys Solids, 2013, 61: 2015–2033CrossRefGoogle Scholar
  33. 33.
    Kanagaraj A B, Chaturvedi P, Alkindi T S, et al. Mechanical, thermal and electrical properties of LiFePO4 /MWCNTs composite electrodes. Mater Lett, 2018, 230: 57–60CrossRefGoogle Scholar
  34. 34.
    Lee D H, Choi I C, Yang G, et al. Activation energy for plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A high temperature nanoindentation study. Scripta Mater, 2018, 156: 129–133CrossRefGoogle Scholar
  35. 35.
    O’Carroll A, Hardiman M, Tobin E F, et al. Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation. Wear, 2018, 412–413: 38–48CrossRefGoogle Scholar
  36. 36.
    Phadikar J K, Bogetti T A, Karlsson A M. On the uniqueness and sensitivity of indentation testing of isotropic materials. Int J Solids Struct, 2013, 50: 3242–3253CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanics and Engineering Science, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations