Ecological responses to substrates in electroactive biofilm: A review

  • YuQing Yan
  • Xin WangEmail author
Review Special Topic: Microbial Electrochemical Technology


Substrate as the electron donor of bioelectrochemical system (BES) has fateful impacts on the microbial community composition of electroactive biofilm (EAB), via the selection upon functional microorganisms such as exoelectrogens, fermenters and methanogens, as well as their interactions. Electrochemical performance as the terminal reflects of electroactivity and the correspondence between community members have been summarized. Exoelectrogens responsible to the conversion towards electricity from their respective preferred substrates such as acetate, propionate, glucose and cellulose has been found to be finite in a small range, e.g., Geobacter, Shewanella and Pseudomonas. Their demands of micromolecular electron donors and the selective pressure of primary substrates facilitate the existence of competitive or cooperative biological processes to exoelectrogenesis. The inherent mechanisms of the dynamics of such interactions have been explored with electrochemical methods, defined co-culture experiments and community analysis. Complete view of the metabolic network in electroactive microbial communities has been shed light on, and appeals further investigation.


substrates electroactive biofilm bioelectrochemical systems fermentation methanogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Gadkari S, Gu S, Sadhukhan J. Towards automated design of bioelectrochemical systems: A comprehensive review of mathematical models. Chem Eng J, 2018, 343: 303–316CrossRefGoogle Scholar
  2. 2.
    Harnisch F, Schröder U. From MFC to MXC: Chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev, 2010, 39: 4433CrossRefGoogle Scholar
  3. 3.
    Wang H, Ren Z J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotech Adv, 2013, 31: 1796–1807CrossRefGoogle Scholar
  4. 4.
    Pant D, Singh A, Van Bogaert G, et al. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv, 2012, 2: 1248–1263CrossRefGoogle Scholar
  5. 5.
    Pous N, Carmona-Martínez A A, Vilajeliu-Pons A, et al. Bidirectional microbial electron transfer: Switching an acetate oxidizing biofilm to nitrate reducing conditions. Biosens Bioelectron, 2016, 75: 352–358CrossRefGoogle Scholar
  6. 6.
    Kumar A, Hsu L H H, Kavanagh P, et al. The ins and outs of microorganism-electrode electron transfer reactions. Nat Rev Chem, 2017, 1: 0024CrossRefGoogle Scholar
  7. 7.
    Yang G, Huang L, You L, et al. Electrochemical and spectroscopic insights into the mechanisms of bidirectional microbe-electrode electron transfer in Geobacter soli biofilms. Electrochem Commun, 2017, 77: 93–97CrossRefGoogle Scholar
  8. 8.
    Shi L, Squier T C, Zachara J M, et al. Respiration of metal (hydr) oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Mol MicroBiol, 2007, 65: 12–20CrossRefGoogle Scholar
  9. 9.
    Yang Y, Xu M, Guo J, et al. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem, 2012, 47: 1707–1714CrossRefGoogle Scholar
  10. 10.
    Kumar R, Singh L, Zularisam A W. Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sustain Energy Rev, 2016, 56: 1322–1336CrossRefGoogle Scholar
  11. 11.
    Lovley D R. Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci, 2011, 4: 4896CrossRefGoogle Scholar
  12. 12.
    Malvankar N S, Lovley D R. Microbial nanowires for bioenergy applications. Curr Opin Biotech, 2014, 27: 88–95CrossRefGoogle Scholar
  13. 13.
    Malvankar N S, Tuominen M T, Lovley D R. Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy Environ Sci, 2012, 5: 5790CrossRefGoogle Scholar
  14. 14.
    Michelson K, Sanford R A, Valocchi A J, et al. Nanowires of Geobacter sulfurreducens require redox cofactors to reduce metals in pore spaces too small for cell passage. Environ Sci Tech, 2017, 51: 11660–11668CrossRefGoogle Scholar
  15. 15.
    Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro, 2009, 7: 375–381CrossRefGoogle Scholar
  16. 16.
    Bond D R, Lovley D R. Electricity production by geobacter sulfurreducens attached to electrodes. Appl Environ MicroBiol, 2003, 69: 1548–1555CrossRefGoogle Scholar
  17. 17.
    Ringeisen B R, Ray R, Little B. A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources, 2007, 165: 591–597CrossRefGoogle Scholar
  18. 18.
    Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Tech, 2010, 101: 1533–1543CrossRefGoogle Scholar
  19. 19.
    Pandey P, Shinde V N, Deopurkar R L, et al. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy, 2016, 168: 706–723CrossRefGoogle Scholar
  20. 20.
    Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Tech, 2007, 98: 2568–2577CrossRefGoogle Scholar
  21. 21.
    Choi J, Chang H N, Han J I. Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol Lett, 2011, 33: 705–714CrossRefGoogle Scholar
  22. 22.
    Jung S, Regan J M. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol, 2007, 77: 393–402CrossRefGoogle Scholar
  23. 23.
    Lee H S, Parameswaran P, Kato-Marcus A, et al. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res, 2008, 42: 1501–1510CrossRefGoogle Scholar
  24. 24.
    Chae K J, Choi M J, Lee J W, et al. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Tech, 2009, 100: 3518–3525CrossRefGoogle Scholar
  25. 25.
    Yu J, Park Y, Kim B, et al. Power densities and microbial communities of brewery wastewater-fed microbial fuel cells according to the initial substrates. Bioprocess Biosyst Eng, 2015, 38: 85–92CrossRefGoogle Scholar
  26. 26.
    Kiely P D, Rader G, Regan J M, et al. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresource Tech, 2011, 102: 361–366CrossRefGoogle Scholar
  27. 27.
    Yang N, Hafez H, Nakhla G. Impact of volatile fatty acids on microbial electrolysis cell performance. Bioresource Tech, 2015, 193: 449–455CrossRefGoogle Scholar
  28. 28.
    Mateo S, Cañizares P, Rodrigo M A, et al. Driving force behind electrochemical performance of microbial fuel cells fed with different substrates. Chemosphere, 2018, 207: 313–319CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Min B, Huang L, et al. Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresource Tech, 2011, 102: 1166–1173CrossRefGoogle Scholar
  30. 30.
    Ren Z, Ward T E, Regan J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol, 2007, 41: 4781–4786CrossRefGoogle Scholar
  31. 31.
    Cheng S, Kiely P, Logan B E. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresource Tech, 2011, 102: 367–371CrossRefGoogle Scholar
  32. 32.
    Rezaei F, Xing D, Wagner R, et al. Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell. Appl Environ MicroBiol, 2009, 75: 3673–3678CrossRefGoogle Scholar
  33. 33.
    Ishii S, Watanabe K, Yabuki S, et al. Comparison of electrode reduction activities of geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl Environ MicroBiol, 2008, 74: 7348–7355CrossRefGoogle Scholar
  34. 34.
    Ishii S, Suzuki S, Norden-Krichmar T M, et al. Microbial population and functional dynamics associated with surface potential and carbon metabolism. ISME J, 2014, 8: 963–978CrossRefGoogle Scholar
  35. 35.
    Freguia S, Teh E H, Boon N, et al. Microbial fuel cells operating on mixed fatty acids. Bioresource Tech, 2010, 101: 1233–1238CrossRefGoogle Scholar
  36. 36.
    Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol, 2005, 39: 658–662CrossRefGoogle Scholar
  37. 37.
    Jang J K, Chang I S, Hwang H Y, et al. Electricity generation coupled to oxidation of propionate in a microbial fuel cell. Biotechnol Lett, 2010, 32: 79–85CrossRefGoogle Scholar
  38. 38.
    de Cárcer D A, Ha P T, Jang J K, et al. Microbial community differences between propionate-fed microbial fuel cell systems under open and closed circuit conditions. Appl Microbiol Biotechnol, 2011, 89: 605–612CrossRefGoogle Scholar
  39. 39.
    Sun Q, Li Z L, Wang Y Z, et al. Cathodic bacterial community structure applying the different co-substrates for reductive decolorization of Alizarin Yellow R. Bioresource Tech, 2016, 208: 64–72CrossRefGoogle Scholar
  40. 40.
    Sun J, Hu Y Y, Bi Z, et al. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Tech, 2009, 100: 3185–3192CrossRefGoogle Scholar
  41. 41.
    Wang X, Feng Y, Wang H, et al. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol, 2009, 43: 6088–6093CrossRefGoogle Scholar
  42. 42.
    Lovley D R, Giovannoni S J, White D C, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol, 1993, 159: 336–344CrossRefGoogle Scholar
  43. 43.
    Kiely P D, Regan J M, Logan B E. The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotech, 2011, 22: 378–385CrossRefGoogle Scholar
  44. 44.
    Montpart N, Rago L, Baeza J A, et al. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Res, 2015, 68: 601–615CrossRefGoogle Scholar
  45. 45.
    Harnisch F, Koch C, Patil S A, et al. Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow-cytometry. Energy Environ Sci, 2011, 4: 1265CrossRefGoogle Scholar
  46. 46.
    Brown D G, Komlos J, Jaffé P R. Simultaneous utilization of acetate and hydrogen by Geobacter sulfurreducens and implications for use of hydrogen as an indicator of redox conditions. Environ Sci Technol, 2005, 39: 3069–3076CrossRefGoogle Scholar
  47. 47.
    Flayac C, Trably E, Bernet N. Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures. Bioelectrochemistry, 2018, 123: 219–226CrossRefGoogle Scholar
  48. 48.
    Ishii S, Suzuki S, Tenney A, et al. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes. ISME J, 2018, 12: 2844–2863CrossRefGoogle Scholar
  49. 49.
    Rosenbaum M A, Bar H Y, Beg Q K, et al. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresource Tech, 2011, 102: 2623–2628CrossRefGoogle Scholar
  50. 50.
    Kim B. Dynamic effects of learning capabilities and profit structures on_the innovation competition. Optim Control Appl Meth, 1999, 20: 127–144CrossRefGoogle Scholar
  51. 51.
    von Canstein H, Ogawa J, Shimizu S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ MicroBiol, 2008, 74: 615–623CrossRefGoogle Scholar
  52. 52.
    Milliken C E, May H D. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol, 2007, 73: 1180–1189CrossRefGoogle Scholar
  53. 53.
    Kiely P D, Call D F, Yates M D, et al. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biotechnol, 2010, 88: 371–380CrossRefGoogle Scholar
  54. 54.
    Zhao Y G, Zhang Y, She Z, et al. Effect of substrate conversion on performance of microbial fuel cells and anodic microbial communities. Environ Eng Sci, 2017, 34: 666–674CrossRefGoogle Scholar
  55. 55.
    Müller N, Worm P, Schink B, et al. Syntrophic butyrate and propionate oxidation processes: From genomes to reaction mechanisms. Environ MicroBiol Rep, 2010, 2: 489–499CrossRefGoogle Scholar
  56. 56.
    Liu X, Zhuo S, Rensing C, et al. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. ISME J, 2018, 12: 2142–2151CrossRefGoogle Scholar
  57. 57.
    Bond D R, Holmes D E, Tender L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295: 483–485CrossRefGoogle Scholar
  58. 58.
    Vandižurová A, Bódy G, Javorský P, et al. Actinomyces ruminicola G10—The rumen bacterium recovered from glycerol enriched cultivation media. Nova BioTech Chim, 2013, 12: 39–45Google Scholar
  59. 59.
    Pham T H, Boon N, Aelterman P, et al. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol, 2008, 77: 1119–1129CrossRefGoogle Scholar
  60. 60.
    Bosire E M, Blank L M, Rosenbaum M A. Strain- and substrate-dependent redox mediator and electricity production by Pseudomonas aeruginosa. Appl Environ Microbiol, 2016, 82: 5026–5038CrossRefGoogle Scholar
  61. 61.
    He Z, Minteer S D, Angenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol, 2005, 39: 5262–5267CrossRefGoogle Scholar
  62. 62.
    Freguia S, Rabaey K, Yuan Z, et al. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol, 2008, 42: 7937–7943CrossRefGoogle Scholar
  63. 63.
    Parameswaran P, Torres C I, Lee H S, et al. Syntrophic interactions among anode respiring bacteria (ARB) and Non-ARB in a biofilm anode: Electron balances. Biotechnol Bioeng, 2009, 103: 513–523CrossRefGoogle Scholar
  64. 64.
    Parameswaran P, Zhang H, Torres C I, et al. Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers. Biotechnol Bioeng, 2010, 105: 69–78CrossRefGoogle Scholar
  65. 65.
    Kaur A, Boghani H C, Michie I, et al. Inhibition of methane production in microbial fuel cells: Operating strategies which select electrogens over methanogens. Bioresource Tech, 2014, 173: 75–81CrossRefGoogle Scholar
  66. 66.
    Mahmoud M, Torres C I, Rittmann B E. Changes in glucose fermentation pathways as a response to the free ammonia concentration in microbial electrolysis cells. Environ Sci Tech, 2017, 51: 13461–13470CrossRefGoogle Scholar
  67. 67.
    Morris J M, Jin S. Influence of NO3 and SO4 on power generation from microbial fuel cells. Chem Eng J, 2009, 153: 127–130CrossRefGoogle Scholar
  68. 68.
    Su S G, Cheng H Y, Zhu T T, et al. Kinetic competition between microbial anode respiration and nitrate respiration in a bioelectrochemical system. Bioelectrochemistry, 2018, 123: 241–247CrossRefGoogle Scholar
  69. 69.
    Liu Y, Ding M, Ling W, et al. A three-species microbial consortium for power generation. Energy Environ Sci, 2017, 10: 1600–1609CrossRefGoogle Scholar
  70. 70.
    Kim C, Song Y E, Lee C R, et al. Glycerol-fed microbial fuel cell with a co-culture of Shewanella oneidensis MR-1 and Klebsiella pneumonae J2B. J Ind Microbiol Biotechnol, 2016, 43: 1397–1403CrossRefGoogle Scholar
  71. 71.
    Venkataraman A, Rosenbaum M A, Perkins S D, et al. Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ Sci, 2011, 4: 4550CrossRefGoogle Scholar
  72. 72.
    Schmitz S, Rosenbaum M A. Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures. Biotech Bioeng, 2018, 13Google Scholar
  73. 73.
    Zhou M, Freguia S, Dennis P G, et al. Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system. Microbial Biotech, 2015, 8: 483–489CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and EngineeringNankai UniversityTianjinChina

Personalised recommendations