Metal-support interaction controlled migration and coalescence of supported particles

  • SuLei Hu
  • Wei-Xue LiEmail author
Article Special Topic: Current Progress in Solid Mechanics and Physical Mechanics


The particle migration and coalescence (PMC) kinetics of a supported metal are the main deactivation mechanisms restricting the successful industrialization of nanoparticles, but the theoretical insights regarding these kinetics are lacking. One key issue is the lack of a physical model to predict the effects of metal-support interaction (MSI) on PMC kinetics. In this paper, we report a theoretical study of PMC kinetics and their dependence on MSI. A new particle diffusion model is proposed based on the surface premelting hypothesis that considers the contact angle of a hemispherical particle on the support. Enhanced MSI suppresses PMC by increasing the radius of curvature and the interfacial adhesion energy, even though the accompanying reduction in the geometry factor partially promotes PMC kinetics. The increased surface energy increases the chemical potential of the atoms in the particle, which is conducive to PMC; an increased surface energy also results in enhanced MSI, which suppresses PMC. The competition between these two contradictory effects leads to a critical contact angle where the surface energy has no influence on the diffusion and resulting PMC kinetics. The proposed diffusion theory mode lincluding the effects of the support and the corresponding kinetic simulations, shed light onto the support-dependence of PMC kinetics and provide a foundation for further optimization and design of supported particles with better stability.

particle migration and coalescence metal-support interaction supported particles diffusion coefficient Smoluchowski 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hansen T W, Delariva A T, Challa S R, et al. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening? Acc Chem Res, 2013, 46: 1720–1730CrossRefGoogle Scholar
  2. 2.
    Farmer J A, Campbell C T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science, 2010, 329: 933–936CrossRefGoogle Scholar
  3. 3.
    Wanke S E, Flynn P C. The sintering of supported metal catalysts. Catal Rev, 1975, 12: 93–135CrossRefGoogle Scholar
  4. 4.
    Astier M, Teichner S J, Vergnon P. Sintering and catalysis. In: Kuczynski G C, ed. Sintering and Catalysis. Materials Science Research. Boston: Springer, 1975. 10: 63–81CrossRefGoogle Scholar
  5. 5.
    Wynblatt P, Gjostein N A. Supported metal crystallites. Prog Solid State Chem, 1975, 9: 21–58CrossRefGoogle Scholar
  6. 6.
    Tao F F, Crozier P A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem Rev, 2016, 116: 3487–3539CrossRefGoogle Scholar
  7. 7.
    DeLaRiva A T, Hansen T W, Challa S R, et al. In situ transmission electron microscopy of catalyst sintering. J Catal, 2013, 308: 291–305CrossRefGoogle Scholar
  8. 8.
    Hu S, Li W X. Theoretical investigation of metal-support interactions on ripening kinetics of supported particles. ChemNanoMat, 2018, 4: 510–517CrossRefGoogle Scholar
  9. 9.
    Liu J C, Wang Y G, Li J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J Am Chem Soc, 2017, 139: 6190–6199CrossRefGoogle Scholar
  10. 10.
    Xu H, Cheng D, Cao D, et al. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal, 2018, 1: 339–348CrossRefGoogle Scholar
  11. 11.
    O’Connor N J, Jonayat A S M, Janik M J, et al. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat Catal, 2018, 1: 531–539CrossRefGoogle Scholar
  12. 12.
    Liu Z P, Jenkins S J, King D A. Role of nanostructured dual-oxide supports in enhanced catalytic activity: Theory of CO oxidation over Au/IrO2/TiO2. Phys Rev Lett, 2004, 93: 156102CrossRefGoogle Scholar
  13. 13.
    Wahlström E, Lopez N, Schaub R, et al. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). Phys Rev Lett, 2003, 90: 026101CrossRefGoogle Scholar
  14. 14.
    Sanz-Navarro C F, Åstrand P O, Chen D, et al. Molecular dynamics simulations of carbon-supported Ni clusters using the reax reactive force field. J Phys Chem C, 2008, 112: 12663–12668CrossRefGoogle Scholar
  15. 15.
    Li C, Huang J, Li Z. A relation for nanodroplet diffusion on smooth surfaces. Sci Rep, 2016, 6: 26488CrossRefGoogle Scholar
  16. 16.
    Liu X, Liu M H, Luo Y C, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J Am Chem Soc, 2012, 134: 10251–10258CrossRefGoogle Scholar
  17. 17.
    Ta N, Liu J J, Chenna S, et al. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J Am Chem Soc, 2012, 134: 20585–20588CrossRefGoogle Scholar
  18. 18.
    Lee J, Burt S P, Carrero C A, et al. Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction. J Catal, 2015, 330: 19–27CrossRefGoogle Scholar
  19. 19.
    Qiao B, Liang J X, Wang A, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res, 2015, 8: 2913–2924CrossRefGoogle Scholar
  20. 20.
    Tang H, Wei J, Liu F, et al. Strong metal-support interactions between gold nanoparticles and nonoxides. J Am Chem Soc, 2016, 138: 56–59CrossRefGoogle Scholar
  21. 21.
    Zhang S, Plessow P N, Willis J J, et al. Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett, 2016, 16: 4528–4534CrossRefGoogle Scholar
  22. 22.
    Ruckenstein E, Pulvermacher B. Kinetics of crystallite sintering during heat treatment of supported metal catalysts. AIChE J, 1973, 19: 356–364CrossRefGoogle Scholar
  23. 23.
    Ruckenstein E. Growth kinetics and the size distributions of supported metal crystallites. J Catal, 1973, 29: 224–245CrossRefGoogle Scholar
  24. 24.
    Wang J, Chen S, Cui K, et al. Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano, 2016, 10: 2893–2902CrossRefGoogle Scholar
  25. 25.
    Luedtke W D, Landman U. Slip diffusion and Lévy flights of an adsorbed gold nanocluster. Phys Rev Lett, 1999, 82: 3835–3838CrossRefGoogle Scholar
  26. 26.
    Lewis L J, Jensen P, Combe N, et al. Diffusion of gold nanoclusters on graphite. Phys Rev B, 2000, 61: 16084–16090CrossRefGoogle Scholar
  27. 27.
    Yoon B, Luedtke W D, Gao J, et al. Diffusion of gold clusters on defective graphite surfaces. J Phys Chem B, 2003, 107: 5882–5891CrossRefGoogle Scholar
  28. 28.
    Celestini F. Diffusion of a liquid nanoparticle on a disordered substrate. Phys Rev B, 2004, 70: 115402CrossRefGoogle Scholar
  29. 29.
    Jensen P, Clément A. J. Lewis L. Diffusion of nanoclusters on nonideal surfaces. Phys E-Low-dimensional Syst NanoStruct, 2004, 21: 71–76CrossRefGoogle Scholar
  30. 30.
    Maruyama Y. Temperature dependence of Lévy-type stick-slip diffusion of a gold nanocluster on graphite. Phys Rev B, 2004, 69: 245408CrossRefGoogle Scholar
  31. 31.
    Chen J, Chan K Y. Size-dependent mobility of platinum cluster on a graphite surface. Mol Simul, 2005, 31: 527–533CrossRefGoogle Scholar
  32. 32.
    Alkis S, Krause J L, Fry J N, et al. Dynamics of Ag clusters on complex surfaces: Molecular dynamics simulations. Phys Rev B, 2009, 79: 121402CrossRefGoogle Scholar
  33. 33.
    Ryu J H, Seo D H, Kim D H, et al. Molecular dynamics simulations of the diffusion and rotation of Pt nanoclusters supported on graphite. Phys Chem Chem Phys, 2009, 11: 503–507CrossRefGoogle Scholar
  34. 34.
    Ma M, Tocci G, Michaelides A, et al. Fast diffusion of water nanodroplets on graphene. Nat Mater, 2016, 15: 66–71CrossRefGoogle Scholar
  35. 35.
    Guerra R, Tartaglino U, Vanossi A, et al. Ballistic nanofriction. Nat Mater, 2010, 9: 634–637CrossRefGoogle Scholar
  36. 36.
    Bogicevic A, Liu S, Jacobsen J, et al. Island migration caused by the motion of the atoms at the border: Size and temperature dependence of the diffusion coefficient. Phys Rev B, 1998, 57: R9459–R9462CrossRefGoogle Scholar
  37. 37.
    Stoldt C R, Jenks C J, Thiel P A, et al. Smoluchowski ripening of Ag islands on Ag(100). J Chem Phys, 1999, 111: 5157–5166CrossRefGoogle Scholar
  38. 38.
    Thiel P A, Shen M, Liu D J, et al. Coarsening of two-dimensional nanoclusters on metal surfaces. J Phys Chem C, 2009, 113: 5047–5067CrossRefGoogle Scholar
  39. 39.
    Kang H C, Thiel P A, Evans J W. Cluster diffusivity: Structure, correlation, and scaling. J Chem Phys, 1990, 93: 9018–9025CrossRefGoogle Scholar
  40. 40.
    Wen J M, Chang S L, Burnett J W, et al. Diffusion of large two-dimensional Ag clusters on Ag(100). Phys Rev Lett, 1994, 73: 2591–2594CrossRefGoogle Scholar
  41. 41.
    Stankic S, Cortes-Huerto R, Crivat N, et al. Equilibrium shapes of supported silver clusters. Nanoscale, 2013, 5: 2448–2453CrossRefGoogle Scholar
  42. 42.
    Mittendorfer F, Seriani N, Dubay O, et al. Morphology of mesoscopic Rh and Pd nanoparticles under oxidizing conditions. Phys Rev B, 2007, 76: 233413CrossRefGoogle Scholar
  43. 43.
    Seriani N, Mittendorfer F. Platinum-group and noble metals under oxidizing conditions. J Phys-Condens Matter, 2008, 20: 184023CrossRefGoogle Scholar
  44. 44.
    Shao X, Prada S, Giordano L, et al. Tailoring the shape of metal Ad-particles by doping the oxide support. Angew Chem Int Ed, 2011, 50: 11525–11527CrossRefGoogle Scholar
  45. 45.
    Sterrer M, Risse T, Heyde M, et al. Crossover from three-dimensional to two-dimensional geometries of Au Nanostructures on thin MgO (001) films: A confirmation of theoretical predictions. Phys Rev Lett, 2007, 98: 206103CrossRefGoogle Scholar
  46. 46.
    Jak M J J, Konstapel C, van Kreuningen A, et al. The influence of substrate defects on the growth rate of palladium nanoparticles on a TiO2(110) surface. Surf Sci, 2001, 474: 28–36CrossRefGoogle Scholar
  47. 47.
    Wallace W T, Min B K, Goodman D W. The stabilization of supported gold clusters by surface defects. J Mol Catal A-Chem, 2005, 228: 3–10CrossRefGoogle Scholar
  48. 48.
    Xu L, Henkelman G, Campbell C T, et al. Pd diffusion on MgO(100): The role of defects and small cluster mobility. Surf Sci, 2006, 600: 1351–1362CrossRefGoogle Scholar
  49. 49.
    Plessow P N, Abild-Pedersen F. Sintering of Pt nanoparticles via volatile PtO2: Simulation and comparison with experiments. ACS Catal, 2016, 6: 7098–7108CrossRefGoogle Scholar
  50. 50.
    Gerber T, Knudsen J, Feibelman P J, et al. CO-induced smoluchowski ripening of Pt cluster arrays on the graphene/Ir(111) Moiré. ACS Nano, 2013, 7: 2020–2031CrossRefGoogle Scholar
  51. 51.
    Matthey D, Wang J G, Wendt S, et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science, 2007, 315: 1692–1696CrossRefGoogle Scholar
  52. 52.
    Lu P, Campbell C T, Xia Y. A sinter-resistant catalytic system fabricated by maneuvering the selectivity of SiO2 deposition onto the TiO2 surface versus the Pt nanoparticle surface. Nano Lett, 2013, 13: 4957–4962CrossRefGoogle Scholar
  53. 53.
    Zhu H, Ma Z, Overbury S H, et al. Rational design of gold catalysts with enhanced thermal stability: Post modification of Au/TiO2 by amorphous SiO2 decoration. Catal Lett, 2007, 116: 128–135CrossRefGoogle Scholar
  54. 54.
    Qian K, Huang W, Jiang Z, et al. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J Catal, 2007, 248: 137–141CrossRefGoogle Scholar
  55. 55.
    Zanella R, Rodríguez-González V, Arzola Y, et al. Au/Y-TiO2 catalyst: High activity and long-term stability in CO oxidation. ACS Catal, 2012, 2: 1–11CrossRefGoogle Scholar
  56. 56.
    Min B K, Wallace W T, Goodman D W. Synthesis of a sinter-resistant, mixed-oxide support for Au nanoclusters. J Phys Chem B, 2004, 108: 14609–14615CrossRefGoogle Scholar
  57. 57.
    Gruber E E. Calculated size distributions for gas bubble migration and coalescence in solids. J Appl Phys, 1967, 38: 243–250CrossRefGoogle Scholar
  58. 58.
    Willertz L E, Shewmon P G. Diffusion of helium gas bubbles in gold and copper foils. MT, 1970, 1: 2217–2223CrossRefGoogle Scholar
  59. 59.
    Morgenstern K, Rosenfeld G, Poelsema B, et al. Brownian motion of vacancy islands on Ag(111). Phys Rev Lett, 1995, 74: 2058–2061CrossRefGoogle Scholar
  60. 60.
    Khare S V, Bartelt N C, Einstein T L. Diffusion of monolayer adatom and vacancy clusters: Langevin analysis and Monte Carlo simulations of their Brownian motion. Phys Rev Lett, 1995, 75: 2148–2151CrossRefGoogle Scholar
  61. 61.
    Jak M J J, Konstapel C, van Kreuningen A, et al. Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2 (110). Surf Sci, 2000, 457: 295–310CrossRefGoogle Scholar
  62. 62.
    Behafarid F, Roldan Cuenya B. Coarsening phenomena of metal nanoparticles and the influence of the support pre-treatment: Pt/TiO2 (110). Surf Sci, 2012, 606: 908–918CrossRefGoogle Scholar
  63. 63.
    Parker S C, Campbell C T. Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO2(110). Phys Rev B, 2007, 75: 035430CrossRefGoogle Scholar
  64. 64.
    Levitas V I, Samani K. Size and mechanics effects in surface-induced melting of nanoparticles. Nat Commun, 2011, 2: 284CrossRefGoogle Scholar
  65. 65.
    Taylor A B, Siddiquee A M, Chon J W M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano, 2014, 8: 12071–12079CrossRefGoogle Scholar
  66. 66.
    Kubo R. The fluctuation-dissipation theorem. Rep Prog Phys, 1966, 29: 255–284CrossRefzbMATHGoogle Scholar
  67. 67.
    Smoluchowski M V. Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen. Physik Zeit, 1916, 17: 557–571Google Scholar
  68. 68.
    Kandel D. Selection of the scaling solution in a cluster coalescence model. Phys Rev Lett, 1997, 79: 4238–4241CrossRefGoogle Scholar
  69. 69.
    Pluis B, Frenkel D, van der Veen J F. Surface-induced melting and freezing II. A semi-empirical Landau-type model. Surf Sci, 1990, 239: 282–300CrossRefGoogle Scholar
  70. 70.
    Heyraud J C, Métois J J, Bermond J M. Surface melting and equilibrium shape; the case of Pb on graphite. J Cryst Growth, 1989, 98: 355–362CrossRefGoogle Scholar
  71. 71.
    Wang S C, Ehrlich G. Diffusion of large surface clusters: Direct observations on Ir(111). Phys Rev Lett, 1997, 79: 4234–4237CrossRefGoogle Scholar
  72. 72.
    José-Yacaman M, Gutierrez-Wing C, Miki M, et al. Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B, 2005, 109: 9703–9711CrossRefGoogle Scholar
  73. 73.
    Kébaili N, Benrezzak S, Cahuzac P, et al. Diffusion of silver nanoparticles on carbonaceous materials. Cluster mobility as a probe for surface characterization. Eur Phys J D, 2009, 52: 115–118CrossRefGoogle Scholar
  74. 74.
    Bardotti L, Jensen P, Hoareau A, et al. Experimental observation of fast diffusion of large antimony clusters on graphite surfaces. Phys Rev Lett, 1995, 74: 4694–4697CrossRefGoogle Scholar
  75. 75.
    Bardotti L, Jensen P, Hoareau A, et al. Diffusion and aggregation of large antimony and gold clusters deposited on graphite. Surf Sci, 1996, 367: 276–292CrossRefGoogle Scholar
  76. 76.
    Yang W C, Zeman M, Ade H, et al. Attractive migration and coalescence: A significant process in the coarsening of TiSi2 islands on the Si(111) surface. Phys Rev Lett, 2003, 90: 136102CrossRefGoogle Scholar
  77. 77.
    Arcidiacono S, Bieri N R, Poulikakos D, et al. On the coalescence of gold nanoparticles. Int J Multiphase Flow, 2004, 30: 979–994CrossRefzbMATHGoogle Scholar
  78. 78.
    Asoro M A, Kovar D, Shao-Horn Y, et al. Coalescence and sintering of Pt nanoparticles: In situ observation by aberration-corrected HAADF STEM. Nanotechnology, 2010, 21: 025701CrossRefGoogle Scholar
  79. 79.
    Yuk J M, Jeong M, Kim S Y, et al. In situ atomic imaging of coalescence of Au nanoparticles on graphene: Rotation and grain boundary migration. Chem Commun, 2013, 49: 11479CrossRefGoogle Scholar
  80. 80.
    Jiang Y, Wang Y, Zhang Y Y, et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der Waals interactions. Nano Res, 2014, 7: 308–314CrossRefGoogle Scholar
  81. 81.
    Li J, Wang Z, Chen C, et al. Atomic-scale observation of migration and coalescence of Au nanoclusters on YSZ surface by aberration-corrected STEM. Sci Rep, 2015, 4: 5521CrossRefGoogle Scholar
  82. 82.
    Niu K Y, Liao H G, Zheng H. Visualization of the coalescence of bismuth nanoparticles. Microsc Microanal, 2014, 20: 416–424CrossRefGoogle Scholar
  83. 83.
    Goudeli E, Pratsinis S E. Crystallinity dynamics of gold nanoparticles during sintering or coalescence. AIChE J, 2016, 62: 589–598CrossRefGoogle Scholar
  84. 84.
    Han Y, Stoldt C R, Thiel P A, et al. Ab initio thermodynamics and kinetics for coalescence of two-dimensional nanoislands and nanopits on metal (100) surfaces. J Phys Chem C, 2016, 120: 21617–21630CrossRefGoogle Scholar
  85. 85.
    Zheng H, Smith R K, Jun Y W, et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science, 2009, 324: 1309–1312CrossRefGoogle Scholar
  86. 86.
    Pluis B, van der Gon A W D, van der Veen J F, et al. Surface-induced melting and freezing I. Medium-energy ion scattering investigation of the melting of Pb“hkl” crystal faces. Surf Sci, 1990, 239: 265–281CrossRefGoogle Scholar
  87. 87.
    Aydin C, Lu J, Browning N D, et al. A “smart” catalyst: Sinter-resistant supported iridium clusters visualized with electron microscopy. Angew Chem Int Ed, 2012, 51: 5929–5934CrossRefGoogle Scholar
  88. 88.
    Hu S, Li W X. Influence of particle size distribution on lifetime and thermal stability of Ostwald ripening of supported particles. ChemCatChem, 2018, 10: 2900–2907CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Physics, School of Chemistry and Materials Science, iCHeM, CAS Excellence Center for NanoscienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations