Advertisement

Design concept development of a variable magnetization motor with improved efficiency and controllable stiffness for robotic applications

  • Kun BaiEmail author
  • Lang Zhu
  • Mi Yuan
  • Kok-Meng LeeEmail author
Article Special Topic: Coexisting-Cooperative-Cognitive (Tri-Co) Robot
  • 18 Downloads

Abstract

A variable magnetization (VM) motor by incorporating magnets that can be flexibly configured with variable magnetization process is proposed to meet the emerging requirements on motor efficiency and actuator compliance in robotic applications. A generalized spin torque model is established which provides a relationship between the motor torque and two different types of motor inputs, the current inputs and the magnet magnetizations. A variable magnetization process is proposed based on the study of the hysteresis properties of the magnetic materials and the design criteria for implementing the variable magnetization process with current pulses are established. The feasibility of the variable magnetization is validated with experimental data and the motor functions and performances are numerically demonstrated and evaluated. The results show that the VM motor can maintain high efficiency by switching between two actuation modes. Controllable stiffness at different equilibria can be also achieved with the VM motor with instantaneous magnetizing current pulses.

Keywords

compliant actuators direct-drive motors variable stiffness motors variable magnetization motors 

References

  1. 1.
    Albu-Schaffer A, Eiberger O, Grebenstein M, et al. Soft robotics. IEEE Robotic Autom Mag, 2008, 15: 20–30CrossRefGoogle Scholar
  2. 2.
    Ding H, Yang X, Zheng N, et al. Tri-Co robot: A Chinese robotic research initiative for enhanced robot interaction capabilities. Natl Sci Rev, 2017, 485: 148Google Scholar
  3. 3.
    Carmichael M G, Liu D K. Estimating physical assistance need using a musculoskeletal model. IEEE Trans Biomed Eng, 2013, 60: 1912–1919CrossRefGoogle Scholar
  4. 4.
    Hsieh H C, Chen D F, Chien L, et al. Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation. IEEE/ASME Trans Mechatron, 2017, 22: 2034–2045CrossRefGoogle Scholar
  5. 5.
    Katsura S, Matsumoto Y, Ohnishi K. Modeling of force sensing and validation of disturbance observer for force control. IEEE Trans Ind Electron, 2007, 54: 530–538CrossRefGoogle Scholar
  6. 6.
    Ham R, Sugar T, Vanderborght B, et al. Compliant actuator designs. IEEE Robot Automat Mag, 2009, 16: 81–94CrossRefGoogle Scholar
  7. 7.
    Wolf S, Grioli G, Eiberger O, et al. Variable stiffness actuators: Review on design and components. IEEE/ASME Trans Mechatron, 2016, 21: 2418–2430CrossRefGoogle Scholar
  8. 8.
    Petit F, Dietrich A, Albu-Schaffer A. Generalizing torque control concepts: Using well-established torque control methods on variable stiffness robots. IEEE Robot Automat Mag, 2015, 22: 37–51CrossRefGoogle Scholar
  9. 9.
    Seok S, Wang A, Chuah M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, 2013. 3307–3312CrossRefGoogle Scholar
  10. 10.
    Knaian A N. Electropermanent Magnetic Connectors and Actuators: Devices and Their Application in Programmable Matter. Cambridge: Massachusetts Institute of Technology, 2010Google Scholar
  11. 11.
    Gilpin K, Knaian A, Rus D. Robot pebbles: One centimeter modules for programmable matter through self-disassembly. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, 2010. 2485–2492CrossRefGoogle Scholar
  12. 12.
    Marchese A D, Onal C D, Rus D. Soft robot actuators using energyefficient valves controlled by electropermanent magnets. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011. 756–761Google Scholar
  13. 13.
    Chossat J B, Maslyczyk A, Lavertu J S, et al. The programmable permanent magnet actuator: A paradigm shift in efficiency for lowspeed torque-holding robotic applications. IEEE Robot Autom Lett, 2018, 3: 1751–1758CrossRefGoogle Scholar
  14. 14.
    Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis (invited). J Appl Phys, 1984, 55: 2115–2120CrossRefGoogle Scholar
  15. 15.
    Jiles D C, Thoelke J B, Devine M K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Trans Magn, 1992, 28: 27–35CrossRefGoogle Scholar
  16. 16.
    Bai K, Xu R, Lee K M, et al. Design and development of a spherical motor for conformal printing of curved electronics. IEEE Trans Ind Electron, 2018, 65: 9190–9200CrossRefGoogle Scholar
  17. 17.
    Li L, Lee K M, Bai K, et al. Inverse models and harmonics compensation for suppressing torque ripples of multiphase permanent magnet motor. IEEE Trans Ind Electron, 2018, 65: 8730–8739CrossRefGoogle Scholar
  18. 18.
    Jackson J. Classical Electrodynamics. Hoboken: Wiley, 1998zbMATHGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Lab of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations