Advertisement

Science China Technological Sciences

, Volume 61, Issue 12, pp 1824–1828 | Cite as

Stability of γ′ multimodal microstructure in a Ni-based powder metallurgy superalloy

  • Ming Zhang
  • GuoQuan Liu
  • Hao Wang
  • BenFu Hu
Article
  • 20 Downloads

Abstract

Multimodal size distribution of γ′ phase was obtained in a slow-cooling experiment following supersolvus solution treatment (1191°C). The morphology of the secondary γ′ particles exhibited splitting and protrusion instabilities. In the subsequent aging process (815°C), reverse coarsening was observed, i.e., the average precipitate size decreased with increasing aging time. Reverse coarsening slows the coarsening rate of the precipitates, increases the hardness of the alloy, and greatly improves the morphological stability of the γ′ phase.

Keywords

Nickel alloys γ′ phase multimodal size distribution microstructure stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Semiatin S L, Kim S L, Zhang F, et al. An investigation of hightemperature precipitation in powder-metallurgy, gamma/gamma-prime nickel-base superalloys. Metall Mat Trans A, 2015, 46: 1715–1730CrossRefGoogle Scholar
  2. 2.
    Wu H, Li J, Liu F, et al. A high-throughput methodology search for the optimum cooling rate in an advanced polycrystalline nickel base superalloy. Mater Des, 2017, 128: 176–181CrossRefGoogle Scholar
  3. 3.
    Goodfellow A J, Galindo-Nava E I, Christofidou K A, et al. Gamma prime precipitate evolution during aging of a model nickel-based superalloy. Metall Mat Trans A, 2018, 49: 718–728CrossRefGoogle Scholar
  4. 4.
    Babu S S, Miller M K, Vitek J M, et al. Characterization of the microstructure evolution in a nickel base superalloy during continuous cooling conditions. Acta Mater, 2001, 49: 4149–4160CrossRefGoogle Scholar
  5. 5.
    Viswanathan G B, Sarosi P M, Whitis D H, et al. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René 88 DT. Mater Sci Eng-A, 2005, 400–401: 489–495CrossRefGoogle Scholar
  6. 6.
    Raujol S, Pettinari F, Locq D, et al. Creep straining micro-mechanisms in a powder-metallurgical nickel-based superalloy. Mater Sci Eng-A, 2004, 387–389: 678–682CrossRefGoogle Scholar
  7. 7.
    Radis R, Schaffer M, Albu M, Kothleitner G, Pölt P, Kozeschnik E (2009) Multimodal size distributions of γ′ precipitates during continuous cooling of UDIMET720Li. Acta Mater, 2009, 57: 5739–5747CrossRefGoogle Scholar
  8. 8.
    Qiu Y Y. Retarded coarsening phenomenon of γ′ particles in Ni-based alloy. Acta Mater, 1996, 44: 4969–4980CrossRefGoogle Scholar
  9. 9.
    Véron M, Bréchet Y, Louchet F. Strain induced directional coarsening in Ni based superalloys. Scripta Mater, 1996, 34: 1883–1886CrossRefGoogle Scholar
  10. 10.
    Singh A R P, Nag S, Hwang J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy. Mater Characterization, 2011, 62: 878–886CrossRefGoogle Scholar
  11. 11.
    Furrer D. γ′ formation in superalloy U720LI. Scripta Mater, 1999, 40: 1215–1220CrossRefGoogle Scholar
  12. 12.
    Jackson M P, Reed R C. Heat treatment of UDIMET 720Li: The effect of microstructure on properties. Mater Sci Eng-A, 1999, 259: 85–97CrossRefGoogle Scholar
  13. 13.
    Unocic R R, Sarosi P M, Viswanathan G B, et al. The creep deformation mechanisms of nickel base superalloy René104. Microsc Microanal, 2005, 11: 1874–1875Google Scholar
  14. 14.
    Tian G, Jia C, Wen Y, et al. Cooling γ′ precipitation behavior and strengthening in powder metallurgy superalloy FGH4096. Rare Met, 2008, 27: 410–417CrossRefGoogle Scholar
  15. 15.
    Mao J, Chang K M, Yang W, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI. Metall Mat Trans A, 2001, 32: 2441–2452CrossRefGoogle Scholar
  16. 16.
    Kaufman M J, Voorhees P W, Johnson W C, et al. An elastically induced morphological instability of a misfitting precipitate. MTA, 1989, 20: 2171–2175CrossRefGoogle Scholar
  17. 17.
    Cha P, Yeon D, Chung S. Phase-field study for the splitting mechanism of coherent misfitting precipitates in anisotropic elastic media. Scripta Mater, 2005, 52: 1241–1245CrossRefGoogle Scholar
  18. 18.
    Mullins W W, Sekerka R F. Morphological stability of a particle growing by diffusion or heat flow. J Appl Phys, 1963, 34: 323–329CrossRefGoogle Scholar
  19. 19.
    Greenwood G W. The growth of dispersed precipitates in solutions. Acta Metall, 1956, 4: 243–248CrossRefGoogle Scholar
  20. 20.
    Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids, 1961, 19: 35–50CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations