Advertisement

Optimal performance regions of an irreversible energy selective electron heat engine with double resonances

  • Zemin Ding
  • Lingen ChenEmail author
  • Yanlin Ge
  • Zhihui Xie
Article
  • 9 Downloads

Abstract

A theoretical model for irreversible double resonance ESE (energy selective electron) device with phonon induced bypass heat leakage which is operating as heat engine system is proposed. The thermodynamic performance is optimized and the impacts of heat leakage and structure parameters of the electron system on its performance are discussed in detail by using FTT (finite time thermodynamics). Moreover, performances of the ESE system with multiple optimization objective functions, including power output, thermal efficiency, ecological function and efficient power, are explored by numerical examples. New optimal performance regions and the selection plans of optimization objective functions of the ESE system are obtained. It reveals that the characteristic of power versus efficiency behave as loop-shaped curves in spite of the heat leakage which will always decrease the efficiency of the electron engine. By properly choosing the design parameters, the ESE engine can be designed to operate at optimal conditions according to different design purpose. The preferred design area should be located between the optimal effective power condition and the optimal ecological function condition.

Keywords

irreversible ESE heat engine double resonances finite time thermodynamics optimal performance regions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark A M, Williams A, Ruggiero S T, et al. Practical electron-tunneling refrigerator. Appl Phys Lett, 2004, 84: 625–627CrossRefGoogle Scholar
  2. 2.
    Pekola J. Tunnelling into the chill. Nature, 2005, 435: 889–890CrossRefGoogle Scholar
  3. 3.
    Giazotto F, Heikkilä T T, Luukanen A, et al. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev Mod Phys, 2006, 78: 217–274CrossRefGoogle Scholar
  4. 4.
    Pekola J P, Giazotto F, Saira O P. Radio-frequency single-electron refrigerator. Phys Rev Lett, 2007, 98: 037201CrossRefGoogle Scholar
  5. 5.
    Sols F. Aspects of quantum cooling in electron and atom systems. Physica E-Low-dimensional Syst NanoStruct, 2010, 42: 466–471CrossRefGoogle Scholar
  6. 6.
    Humphrey T E, Newbury R, Taylor R P, et al. Reversible quantum Brownian heat engines for electrons. Phys Rev Lett, 2002, 89: 116801CrossRefGoogle Scholar
  7. 7.
    Humphrey T E. Mesoscopic Quantum Ratchets and the Thermodynamics of Energy Selective Electron Heat Engines. Dissertation for Dcotoral Degree. Sydney: University of New South Wales, 2003Google Scholar
  8. 8.
    Edwards H L, Niu Q, de Lozanne A L. A quantum-dot refrigerator. Appl Phys Lett, 1993, 63: 1815–1817CrossRefGoogle Scholar
  9. 9.
    Vashaee D, Shakouri A. Improved thermoelectric power factor in metal-based superlattices. Phys Rev Lett, 2004, 92: 106103CrossRefGoogle Scholar
  10. 10.
    O’Dwyer M F. Solid-State Refrigeration and Power Generation Using Semiconductor Nanostructures. Dissertation for Dcotoral Degree. Wollongong: University of Wollongong, 2007Google Scholar
  11. 11.
    Humphrey T E, O’Dwyer M F, Linke H. Power optimization in thermionic devices. J Phys D-Appl Phys, 2005, 38: 2051–2054CrossRefGoogle Scholar
  12. 12.
    O'Dwyer M F, Humphrey T E, Lewis R A, et al. Efficiency in nanometre gap vacuum thermionic refrigerators. J Phys D-Appl Phys, 2009, 42: 035417CrossRefGoogle Scholar
  13. 13.
    He J Z, Wang X M, Liang H N. Optimum performance analysis of an energy selective electron refrigerator affected by heat leaks. Phys Scr, 2009, 80: 035701CrossRefGoogle Scholar
  14. 14.
    Ding Z M, Chen L G, Sun F R. Performance characteristic of energy selective electron (ESE) refrigerator with filter heat conduction. Rev Mex Fis, 2010, 56: 125–131Google Scholar
  15. 15.
    Ding Z M, Chen L G, Sun F R. Ecological optimization of energy selective electron (ESE) heat engine. Appl Math Model, 2011, 35: 276–284MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ding Z M, Chen L G, Sun F R. Performance characteristic of energy selective electron (ESE) heat engine with filter heat conduction. Int J Energy Environ, 2011, 2: 627–640Google Scholar
  17. 17.
    Wang H, Wu G, Lu H. Performance of an energy selective electron refrigerator at maximum cooling rate. Phys Scr, 2011, 83: 055801CrossRefzbMATHGoogle Scholar
  18. 18.
    Ding Z M, Chen L G, Sun F R. Modeling and performance analysis of energy selective electron (ESE) engine with heat leakage and transmission probability. Sci China-Phys Mech Astron, 2011, 54: 1925–1936CrossRefGoogle Scholar
  19. 19.
    Ding Z M, Chen L G, Wang W H, et al. Exploring the operation of a microscopic energy selective electron engine. Physica A-Statistical Mech its Appl, 2015, 431: 94–108CrossRefGoogle Scholar
  20. 20.
    He J Z, He B X. Energy selective electron heat pump with transmission probability (in Chinese). Acta Phys Sin, 2010, 59: 2345–2349Google Scholar
  21. 21.
    Ding Z M, Chen L G, Sun F R. Performance analysis of irreversible energy selective electron (ESE) heat pump with heat leakage. J Energy Institute, 2012, 85: 227–235CrossRefGoogle Scholar
  22. 22.
    Chen L G, Ding Z M, Sun F R. Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics. Energy, 2011, 36: 4011–4018CrossRefGoogle Scholar
  23. 23.
    Su S H, Guo J C, Su G Z, et al. Performance optimum analysis and load matching of an energy selective electron heat engine. Energy, 2012, 44: 570–575CrossRefGoogle Scholar
  24. 24.
    Luo X G, Li C, Liu N, et al. The impact of energy spectrum width in the energy selective electron low-temperature thermionic heat engine at maximum power. Phys Lett A, 2013, 377: 1566–1570CrossRefGoogle Scholar
  25. 25.
    Zhou J L, Chen L G, Ding Z M, et al. Exploring the optimal performances of irreversible single resonance energy selective electron refrigerators. Eur Phys J Plus, 2016, 131: 149CrossRefGoogle Scholar
  26. 26.
    Zhou J L, Chen L G, Ding Z M, et al. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines. Energy, 2016, 111: 306–312CrossRefGoogle Scholar
  27. 27.
    Wang X M, He J Z, Tang W. Performance characteristics of an energy selective electron refrigerator with double resonances. Chin Phys B, 2009, 18: 984–991CrossRefGoogle Scholar
  28. 28.
    Luo X G, He J Z. Performance optimization analysis of a thermoelectric refrigerator with two resonances. Chin Phys B, 2011, 20: 030509CrossRefGoogle Scholar
  29. 29.
    Ding Z M, Chen L G, Sun F R. Performance optimization of a total momentum filtered energy selective electron (ESE) heat engine with double resonances. Math Comput Model, 2011, 54: 2064–2076MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yu Y H, Ding Z M, Chen L G, et al. Power and efficiency optimization for an energy selective electron heat engine with double-resonance energy filter. Energy, 2016, 107: 287–294CrossRefGoogle Scholar
  31. 31.
    Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output. Am J Phys, 1975, 43: 22–24CrossRefGoogle Scholar
  32. 32.
    Andresen B, Salamon P, Berry R S. Thermodynamics in finite time. Phys Today, 1984, 37: 62–70CrossRefGoogle Scholar
  33. 33.
    Hoffmann K H, Burzler J M, Schubert S. Endoreversible thermodynamics. J Non-Equilib Thermodyn, 1997, 22: 311–355zbMATHGoogle Scholar
  34. 34.
    Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization of entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24: 327–359zbMATHGoogle Scholar
  35. 35.
    Sieniutycz S. Hamilton-Jacobi-Bellman framework for optimal control in multistage energy systems. Phys Rep, 2000, 326: 165–258MathSciNetCrossRefGoogle Scholar
  36. 36.
    Chen L G, Sun F R. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004Google Scholar
  37. 37.
    Van den Broeck C. Thermodynamic efficiency at maximum power. Phys Rev Lett, 2005, 95: 190602CrossRefGoogle Scholar
  38. 38.
    Andresen B. Current trends in finite-time thermodynamics. Angew Chem Int Ed, 2011, 50: 2690–2704CrossRefGoogle Scholar
  39. 39.
    Ding Z M, Chen L G, Wang W H, Sun F R. Progress in study on finite time thermodynamic performance optimization for three kinds of microscopic energy conversion systems (in Chinese). Sci Sin Tech, 2015, 45: 889–918Google Scholar
  40. 40.
    Ge Y L, Chen L G, Sun F R. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 2016, 18: 139CrossRefGoogle Scholar
  41. 41.
    Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Technol Sci, 2016, 59: 442–455CrossRefGoogle Scholar
  42. 42.
    Sieniutycz S. Thermodynamic Approaches in Engineering Systems. Oxford: Elsevier, 2016Google Scholar
  43. 43.
    Bi Y H, Chen L G. Finite Time Thermodynamic Optimization for Air Heat Pumps (in Chinese). Beijing: Science Press, 2017Google Scholar
  44. 44.
    Chen L G, Xia S J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes (in Chinese). Beijing: Science Press, 2017Google Scholar
  45. 45.
    Chen L G, Xia S J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles—Thermodynamic and Chemical Theoretical Cycles (in Chinese). Beijing: Science Press, 2017Google Scholar
  46. 46.
    Chen L G, Xia S J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles—Engineering Thermodynamic Plants and Generalized Engine Cycles (in Chinese). Beijing: Science Press, 2017Google Scholar
  47. 47.
    Badescu V. Optimal Control in Thermal Engineering. New York: Springer, 2017CrossRefzbMATHGoogle Scholar
  48. 48.
    Ding Z M, Chen L G, Liu X W. Thermodynamic optimization for irreversible thermal Brownian motors, energy selective electron engines and thermionic devices. Int J Ambient Energy, 2018, 12: 1–5CrossRefGoogle Scholar
  49. 49.
    Bejan A. Theory of heat transfer-irreversible power plants. Int J Heat Mass Transfer, 1988, 31: 1211–1219CrossRefGoogle Scholar
  50. 50.
    Bejan A. Theory of heat transfer-irreversible refrigeration plants. Int J Heat Mass Transfer, 1989, 32: 1631–1639CrossRefGoogle Scholar
  51. 51.
    Sears F W, Salinger G L. Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. London: Addison-Wesley, 1980Google Scholar
  52. 52.
    Angulo-Brown F. An ecological optimization criterion for finite-time heat engines. J Appl Phys, 1991, 69: 7465–7469CrossRefGoogle Scholar
  53. 53.
    Yan Z. Comment on “Ecological optimization criterion for finite-time heat-engines”. J Appl Phys, 1993, 73: 3583CrossRefGoogle Scholar
  54. 54.
    Chen L G, Sun F R, Chen W Z. On the ecological figures-of-merit for thermodynamic cycles (in Chinese). J Eng Therm Energy Power, 1996, 9: 374–376Google Scholar
  55. 55.
    Yan Z. ? and P of a Carnot engine at maximum ?P (in Chinese). J Xiamen Univ, 1986, 25: 279–286Google Scholar
  56. 56.
    Yilmaz T, Durmusoglu Y. Efficient power analysis for an irreversible Carnot heat engine. Int J Energy Res, 2008, 32: 623–628CrossRefGoogle Scholar
  57. 57.
    Chen L G, Ding Z M, Zhou J L, et al. Thermodynamic performance optimization for an irreversible vacuum thermionic generator. Eur Phys J Plus, 2017, 132: 293CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zemin Ding
    • 1
    • 2
    • 3
  • Lingen Chen
    • 1
    • 2
    • 3
    Email author
  • Yanlin Ge
    • 1
    • 2
    • 3
  • Zhihui Xie
    • 1
    • 2
    • 3
  1. 1.Institute of Thermal Science and Power EngineeringNaval University of EngineeringWuhanChina
  2. 2.Military Key Laboratory for Naval Ship Power EngineeringNaval University of EngineeringWuhanChina
  3. 3.College of Power EngineeringNaval University of EngineeringWuhanChina

Personalised recommendations