Science China Technological Sciences

, Volume 62, Issue 1, pp 47–59 | Cite as

A robotic laparoscopic tool with enhanced capabilities and modular actuation

  • ZhengChen Dai
  • ZhongHao Wu
  • JiangRan Zhao
  • Kai XuEmail author


Due to the improved treatment outcomes, research on robotic MIS (Minimally Invasive Surgery) thrived in the past decades. A benchmark example is the da Vinci system that dominates robotic laparoscopy via its technology excellence and strong holding of intellectual properties. This study provides an alternative approach to realize robotic laparoscopic surgeries, by presenting the development and experimentation of the SMARLT (Strengthened Modularly Actuated Robotic Laparoscopic Tool) for MIS. A dual continuum mechanism is used in the design to achieve enhanced distal dexterity, improved reliability, increased payload capability, and actuation modularity. With kinematics modelling and actuation compensation, the SMARLT can be manipulated by a generic manipulator to carry out typical laparoscopic MIS tasks, such as tissue peeling, suturing, and knot tying. Payload capability was also experimentally characterized. The SMARLT-manipulator system essentially formed a continuum-rigid hybrid structure that makes full use of the advantages from each component: the continuum mechanism as a wrist for distal dexterity and other rigid parts for position accuracy and payload capability. With the experimental demonstration of the desired functionalities, the SMARLT design can lead to promising opportunities for commercialization.


dexterous wrist dual continuum mechanism medical robotics modular laparoscopic tools surgical instruments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 9.84 MB.


  1. 1.
    Cuschieri A. Laparoscopic surgery: Current status, issues and future developments. Surgeon, 2005, 3: 125–138CrossRefGoogle Scholar
  2. 2.
    Taylor R H. A perspective on medical robotics. Proc IEEE, 2006, 94: 1652–1664CrossRefGoogle Scholar
  3. 3.
    Guthart G. Annual report 2014. 2015, 108Google Scholar
  4. 4.
    Navarra G, Pozza E, Occhionorelli S, et al. One-wound laparoscopic cholecystectomy. Br J Surg, 1997, 84: 695CrossRefGoogle Scholar
  5. 5.
    Kalloo A N, Singh V K, Jagannath S B, et al. Flexible transgastric peritoneoscopy: A novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointestinal Endoscopy, 2004, 60: 114–117CrossRefGoogle Scholar
  6. 6.
    Xu K, Zhao J, Fu M. Development of the sjtu unfoldable robotic system (surs) for single port laparoscopy. IEEE/ASME Trans Mechatron, 2015, 20: 2133–2145CrossRefGoogle Scholar
  7. 7.
    Zhao J, Feng B, Zheng M H, et al. Surgical robots for spl and notes: A review. Minimally Invasive Ther Allied Technologies, 2015, 24: 8–17CrossRefGoogle Scholar
  8. 8.
    Yamashita H, Kim D, Hata N, et al. Multi-slider linkage mechanism for endoscopic forceps manipulator. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2003. 2577–2582Google Scholar
  9. 9.
    Dombre E, Michelin M, Pierrot F, et al. Marge project: Design, modelling, and control of assistive devices for minimally invasive surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). DLR, 2004. 1–8Google Scholar
  10. 10.
    Van Meer F, Giraud A, Esteve D, et al. A disposable plastic compact wrist for smart minimally invasive surgical tools. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2005. 919–924Google Scholar
  11. 11.
    Ishii C, Kobayashi K. Development of a new bending mechanism and its application to robotic forceps manipulator. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2007. 238–243Google Scholar
  12. 12.
    Shin W H, Kwon D S. Surgical robot system for single-port surgery with novel joint mechanism. IEEE Trans Biomed Eng, 2013, 60: 937–944CrossRefGoogle Scholar
  13. 13.
    Leonard S, Wu K L, Kim K L, et al. Smart tissue anastomosis robot (star): A vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng, 2014, 61: 1305–1317CrossRefGoogle Scholar
  14. 14.
    Hong M B, Jo Y H. Design of a novel 4-dof wrist-type surgical instrument with enhanced rigidity and dexterity. IEEE/ASME Trans Mechatron, 2014, 19: 500–511CrossRefGoogle Scholar
  15. 15.
    Kanno T, Haraguchi D, Yamamoto M, et al. A forceps manipulator with flexible 4-dof mechanism for laparoscopic surgery. IEEE/ASME Trans Mechatron, 2015, 20: 1170–1178CrossRefGoogle Scholar
  16. 16.
    Mitsuishi M, Sugita N, Pitakwatchara P. Force-feedback augmentation modes in the laparoscopic minimally invasive telesurgical system. IEEE/ASME Trans Mechatron, 2007, 12: 447–454CrossRefGoogle Scholar
  17. 17.
    Xu K, Simaan N. An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans Robot, 2008, 24: 576–587CrossRefGoogle Scholar
  18. 18.
    van den Bedem L, Hendrix R, Rosielle N, et al. Design of a minimally invasive surgical teleoperated master-slave system with haptic feedback. In: IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2009. 60–65Google Scholar
  19. 19.
    Xu K, Simaan N. Intrinsic wrench estimation and its performance index for multisegment continuum robots. IEEE Trans Robot, 2010, 26: 555–561CrossRefGoogle Scholar
  20. 20.
    Dalvand M, Shirinzadeh B, Shamdani A H, et al. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery. Int J Med Robotics Comput Assist Surg, 2014, 10: 11–21CrossRefGoogle Scholar
  21. 21.
    Kim U, Lee D H, Yoon W J, et al. Force sensor integrated surgical forceps for minimally invasive robotic surgery. IEEE Trans Robot, 2015, 31: 1214–1224CrossRefGoogle Scholar
  22. 22.
    Hagn U, Nickl M, Jörg S, et al. The dlr miro: A versatile lightweight robot for surgical applications. Industrial Robot, 2008, 35: 34–336CrossRefGoogle Scholar
  23. 23.
    Berkelman P, Ma J. A compact modular teleoperated robotic system for laparoscopic surgery. Int J Robotics Res, 2009, 28: 1198–1215CrossRefGoogle Scholar
  24. 24.
    Hannaford B, Rosen J, Friedman D W, et al. Raven-ii: An open platform for surgical robotics research. IEEE Trans Biomed Eng, 2013, 60: 954–959CrossRefGoogle Scholar
  25. 25.
    Simaan N, Xu K, Kapoor A, et al. Design and integration of a telerobotic system for minimally invasive surgery of the throat. Int J Robot Res, 2009, 28: 1134–1153CrossRefGoogle Scholar
  26. 26.
    Ding J, Goldman R E, Xu K, et al. Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE/ASME Trans Mechatron, 2013, 18: 1612–1624CrossRefGoogle Scholar
  27. 27.
    Simaan N, Bajo A, Reiter A, et al. Lessons learned using the insertable robotic effector platform (irep) for single port access surgery. J Robotic Surg, 2013, 7: 235–240CrossRefGoogle Scholar
  28. 28.
    Taylor R H, Stoianovici D. Medical robotics in computer-integrated surgery. IEEE Trans Robot Automat, 2003, 19: 765–781CrossRefGoogle Scholar
  29. 29.
    Kuo C H, Dai J S. Kinematics of a fully-decoupled remote center-ofmotion parallel manipulator for minimally invasive surgery. J Med Devices, 2012, 6: 021008CrossRefGoogle Scholar
  30. 30.
    Hadavand M, Mirbagheri A, Behzadipour S, et al. A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems. Int J Med Robot Comp Assisted Surg, 2014, 10: 129–139CrossRefGoogle Scholar
  31. 31.
    Azimian H, Patel R V, Naish M D. On constrained manipulation in robotics-assisted minimally invasive surgery. In: IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB). IEEE, 2010. 650–655Google Scholar
  32. 32.
    Lopez E, Kwok K W, Payne C J, et al. Implicit active constraints for robot-assisted arthroscopy. In: 2013 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2013. 5390–5395CrossRefGoogle Scholar
  33. 33.
    Nasseri M A, Gschirr P, Eder M, et al. Virtual fixture control of a hybrid parallel-serial robot for assisting ophthalmic surgery: An experimental study. In: IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB). IEEE, 2014. 732–738CrossRefGoogle Scholar
  34. 34.
    Xu K, Zhang H, Zhao J, et al. Design of a robotic laparoscopic tool with modular actuation. In: International Conference on Intelligent Robotics and Applications (ICIRA). 2017. 298–310CrossRefGoogle Scholar
  35. 35.
    Okamura A M. Methods for haptic feedback in teleoperated robotassisted surgery. Industrial Robot, 2004, 31: 499–508CrossRefGoogle Scholar
  36. 36.
    Dubrowski A, Sidhu R, Park J, et al. Quantification of motion characteristics and forces applied to tissues during suturing. Am J Surgery, 2005, 190: 131–136CrossRefGoogle Scholar
  37. 37.
    Berg D R, Kinney T P, Li P Y, et al. Determination of surgical robot tool force requirements through tissue manipulation and suture force measurement. In: Design of Medical Devices Conference. ASME, 2011. 1–4Google Scholar
  38. 38.
    Xu K, Fu M, Zhao J. An experimental kinestatic comparison between continuum manipulators with structural variations. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014. 3258–3264Google Scholar
  39. 39.
    Zhao J, Zheng X, Zheng M, et al. An endoscopic continuum testbed for finalizing system characteristics of a surgical robot for notes procedures. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2013. 63–70Google Scholar
  40. 40.
    Xu K, Simaan N. Analytic formulation for the kinematics, statics and shape restoration of multibackbone continuum robots via elliptic integrals. J Mech Robot, 2010, 2: 1–13CrossRefGoogle Scholar
  41. 41.
    Webster R J, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review. Int J Robotics Res, 2010, 29: 1661–1683CrossRefGoogle Scholar
  42. 42.
    Siciliano B, Khatib O. Handbook of Robotics. Springer, 2008CrossRefzbMATHGoogle Scholar
  43. 43.
    Bettini A, Marayong P, Lang S, et al. Vision-assisted control for manipulation using virtual fixtures. IEEE Trans Robot, 2004, 20: 953–966CrossRefGoogle Scholar
  44. 44.
    Nenchev D N. Restricted jacobian matrices of redundant manipulators in constrained motion tasks. Int J Robotics Res, 1992, 11: 584–597CrossRefGoogle Scholar
  45. 45.
    Xu K, Simaan N. Actuation compensation for flexible surgical snakelike robots with redundant remote actuation. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2006. 4148–4154Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • ZhengChen Dai
    • 1
  • ZhongHao Wu
    • 1
  • JiangRan Zhao
    • 1
  • Kai Xu
    • 2
    Email author
  1. 1.The RII Lab (Lab of Robotics Innovation and Intervention), UM-SJTU Joint InstituteShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Mechanical System and Vibration, School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations