Science China Technological Sciences

, Volume 61, Issue 12, pp 1829–1838 | Cite as

Atomistic simulation study of favored compositions of Ni-Nb-Al metallic glasses

  • Bei Cai
  • MengHao Yang
  • JianBo Liu
  • JiaHao Li
  • BaiXin Liu


This study investigates the formation process of Ni-Nb-Al metallic glasses. To this end, a long-range n-body potential was constructed for the Ni-Nb-Al ternary metal system, and applied to atomistic simulations. The simulations not only showed the physical origins of the amorphous phase formation, but also quantitatively predicted a hexagonal compositional region that energetically favors the glass formation. The energy difference between the solid solution and metallic glass, which generates the amorphization driving force (ADF), was suggested to indicate the glass-formation ability (GFA) of each alloy. Based on the computed ADFs, the Ni55Nb25Al20 alloy exhibited the highest GFA among the Ni-Nb-Al members, implying that the glass formed by this amorphous alloy is more thermodynamically stable than other alloys in the system. In a Voronoi tessellation analysis, the knee point of the coordination-number distribution curve corresponded to the glass-formation region of the Ni-Nb-Al system.


interatomic potential atomistic simulation glass-formation ability Ni-Nb-Al system 


  1. 1.
    Yavari A R, Lewandowski J J, Eckert J. Mechanical properties of bulk metallic glasses. MRS Bull, 2004, 32: 635–638CrossRefGoogle Scholar
  2. 2.
    Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses. Prog Mater Sci, 2010, 55: 759–839CrossRefGoogle Scholar
  3. 3.
    Johnson W L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull, 1999, 24: 42–56CrossRefGoogle Scholar
  4. 4.
    Murty B. Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Mater, 2000, 48: 3985–3996CrossRefGoogle Scholar
  5. 5.
    Qin C L, Zhang W, Asami K, et al. Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu-Hf-Ti-Nb alloys. Acta Mater, 2005, 53: 3903–3911CrossRefGoogle Scholar
  6. 6.
    Zeng Q, Sheng H, Ding Y, et al. Long-range topological order in metallic glass. Science, 2011, 332: 1404–1406CrossRefGoogle Scholar
  7. 7.
    Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses. Nat Commun, 2012, 3: 609CrossRefGoogle Scholar
  8. 8.
    Han F F, Inoue A, Han Y, et al. Novel heating-induced reversion during crystallization of Al-based glassy alloys. Sci Rep, 2017, 7: 46113CrossRefGoogle Scholar
  9. 9.
    Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci, 1998, 43: 365–520CrossRefGoogle Scholar
  10. 10.
    Louzguine D V, Inoue A. Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature. J Non-Cryst Solids, 2002, 311: 281–293CrossRefGoogle Scholar
  11. 11.
    Janik-Czachor M, Kudelski A, Dolata M, et al. Modification of surface activity of Cu-Zr amorphous alloys and Cu metal by electrochemical methods. Mater Sci Eng-A, 1999, 267: 227–234CrossRefGoogle Scholar
  12. 12.
    Yang G W, Lin C, Liu J B, et al. Formation of metastable crystalline phases by solid state reaction in Ni-Nb multilayered films. J Phys DAppl Phys, 1999, 32: 79–83CrossRefGoogle Scholar
  13. 13.
    Kung K T Y, Liu B X, Nicolet M A. Study of Ni-Nb system by Ion mixing. Phys Stat Sol, 2010, 77: 355–359CrossRefGoogle Scholar
  14. 14.
    Jiang Q K, Liu P, Ma Y, et al. Super elastic strain limit in metallic glass films. Sci Rep, 2012, 2: 852CrossRefGoogle Scholar
  15. 15.
    Wang W H, Dong C, Shek C H. Bulk metallic glasses. Mater Sci Eng R, 2004, 44: 45–89CrossRefGoogle Scholar
  16. 16.
    Lu Z P, Bei H, Liu C T. Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics, 2007, 15: 618–624CrossRefGoogle Scholar
  17. 17.
    Turnbull D. Under what conditions can a glass be formed? Contemp Phys, 1969, 10: 473–488CrossRefGoogle Scholar
  18. 18.
    Egami T, Waseda Y. Atomic size effect on the formability of metallic glasses. J Non-Cryst Solids, 1984, 64: 113–134CrossRefGoogle Scholar
  19. 19.
    Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater, 2002, 50: 3501–3512CrossRefGoogle Scholar
  20. 20.
    Lu Z P, Liu C T. Glass formation criterion for various glass-forming systems. Phys Rev Lett, 2003, 91: 115505CrossRefGoogle Scholar
  21. 21.
    Li J H, Dai X D, Liang S H, et al. Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys Rep, 2008, 455: 1–134CrossRefGoogle Scholar
  22. 22.
    Liu B X, Li J H, Lai W S. Metallic glass-forming composition range of the Cu-Zr-Ti ternary system determined by molecular dynamics simulations with many-body potentials. J Mater Res, 2011, 26: 547–560CrossRefGoogle Scholar
  23. 23.
    Li J H, Dai Y, Cui Y Y, et al. Atomistic theory for predicting the binary metallic glass formation. Mater Sci Eng-R-Rep, 2011, 72: 1–28CrossRefGoogle Scholar
  24. 24.
    Zhang K, Wang M, Papanikolaou S, et al. Quantum mechanical/molecular mechanical/continuum style solvation model: Time-dependent density functional theory. J Chem Phys, 2013, 139: 084106CrossRefGoogle Scholar
  25. 25.
    Li J H, Dai Y, Dai X D. Long-range n-body potential and applied to atomistic modeling the formation of ternary metallic glasses. Intermetallics, 2012, 31: 292–320CrossRefGoogle Scholar
  26. 26.
    Massalski T B, Hassen P, Jaffee R I. Amorphous metals and semiconductors: Proceeding of an international workshop. Coronado: Pergamon Press, 1986Google Scholar
  27. 27.
    Yang B, Yong D U, Liu Y. Recent progress in criterions for glass forming ability. Trans Nonferrous Met Soc China, 2009, 19: 78–84CrossRefGoogle Scholar
  28. 28.
    Dai X D, Kong Y, Li J H. Long-range empirical potential model: Application to fcc transition metals and alloys. Phys Rev B, 2007, 75: 104101CrossRefGoogle Scholar
  29. 29.
    Dai X D, Li J H, Kong Y. Long-range empirical potential for the bcc structured transition metals. Phys Rev B, 2007, 75: 052102CrossRefGoogle Scholar
  30. 30.
    Dai Y, Li J H, Liu B X. Long-range empirical potential model: Extension to hexagonal close-packed metals. J Phys-Condens Matter, 2009, 21: 385402CrossRefGoogle Scholar
  31. 31.
    Li J H, Dai Y, Dai X D, et al. Development of n-body potentials for hcp-bcc and fcc-bcc binary transition metal systems. Comput Mater Sci, 2008, 43: 1207–1215CrossRefGoogle Scholar
  32. 32.
    Li Y, Li J H, Liu J B, et al. Atomic approach to the optimized compositions of Ni-Nb-Ti glassy alloys with large glass-forming ability. RSC Adv, 2014, 5: 3054–3062CrossRefGoogle Scholar
  33. 33.
    Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744CrossRefGoogle Scholar
  34. 34.
    Clark S J, Segall M D, Pickard C J. First principles methods using CASTEP. Zeitschrift für Kristallographie, 2005, 220: 567–570Google Scholar
  35. 35.
    Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249CrossRefGoogle Scholar
  36. 36.
    Kittel C, McEuen P. Introduction to Solid-State Physics. New York: Wiley, 1996Google Scholar
  37. 37.
    Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook. 2nd ed. Cambridge: MIT, 1971Google Scholar
  38. 38.
    Haynes W M, Lide D R, Bruno T J. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2014Google Scholar
  39. 39.
    Villars P. Pearson’s handbook desk edition: Crystallo-graphic data for intermetallic phases. ASM International, Materials Park, 1997Google Scholar
  40. 40.
    Dai Y, Li J H, Che X L, et al. Proposed long-range empirical potential to study the metallic glasses in the Ni-Nb-Ta System. J Phys Chem B, 2009, 113: 7282–7290CrossRefGoogle Scholar
  41. 41.
    Zhang Z J, Huang X Y, Zhang Z X. Hexagonal metastable phase formation in Ni3RM (RM=Mo, Nb, Ta) multilayered films by solidstate reaction. Acta Mater, 1998, 46: 4189–4194CrossRefGoogle Scholar
  42. 42.
    Papadimitriou I, Utton C, Tsakiropoulos P. Ab initio investigation of the Nb-Al system. Comput Mater Sci, 2015, 107: 116–121CrossRefGoogle Scholar
  43. 43.
    Rose J H, Smith J R, Ferrante J. Universal features of bonding in metals. Phys Rev B, 1983, 28: 1835–1845CrossRefGoogle Scholar
  44. 44.
    Sheng H W, Wilde G, Ma E. The competing crystalline and amorphous solid solutions in the Ag-Cu system. Acta Mater, 2002, 50: 475–488CrossRefGoogle Scholar
  45. 45.
    Panagiotopoulos A Z, Quirke N, Stapleton M, et al. Phase equilibria by simulation in the Gibbs ensemble. Mol Phys, 1988, 63: 527–545CrossRefGoogle Scholar
  46. 46.
    Allen M P, Tildesley D J. Computer Simulation of Liquids. London: Oxford University Press, 1987zbMATHGoogle Scholar
  47. 47.
    Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys, 1981, 52: 7182–7190CrossRefGoogle Scholar
  48. 48.
    Dai Y, Li J H, Che X L, et al. Glass-forming region of the Ni-Nb-Ta ternary metal system determined directly from n-body potential through molecular dynamics simulations. J Mater Res, 2009, 24: 1815–1819CrossRefGoogle Scholar
  49. 49.
    Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci, 2011, 56: 379–473CrossRefGoogle Scholar
  50. 50.
    Hung L S, Gyulai J, Nastasi M, et al. Ion-induced amorphous and crystalline phase formation in Al/Ni, Al/Pd, and Al/Pt thin films. Appl Phys Lett, 1983, 42: 672–674CrossRefGoogle Scholar
  51. 51.
    Liu B X, Johnson W L, Nicolet M A. Nuclear Instruments & Methods in Physics Research, 1983, 209: 229–234CrossRefGoogle Scholar
  52. 52.
    Yoo D J, Hwang S M, Lee S M. Phase formation in mechanically alloyed Nb-Al powders. Appl Phys Lett, 1988, 53: 1399–1401CrossRefGoogle Scholar
  53. 53.
    Zhang Z J, Bai H Y, Qiu Q L, et al. Phase evolution upon ion mixing and solid-state reaction and thermodynamic interpretation in the Ni-Nb system. J Appl Phys, 1993, 73: 1702–1710CrossRefGoogle Scholar
  54. 54.
    Leonhardt M, Löser W, Lindenkreuz H G. Solidification kinetics and phase formation of undercooled eutectic Ni-Nb melts. Acta Mater, 1999, 47: 2961–2968CrossRefGoogle Scholar
  55. 55.
    Zhu Z, Zhang H, Pan D, et al. Fabrication of binary Ni-Nb bulk metallic glass with high strength and compressive plasticity. Adv Eng Mater, 2006, 8: 953–957CrossRefGoogle Scholar
  56. 56.
    Skakov Y A, Djakonova N P, Edneral N V, et al. Some peculiarities of the atomic structure of metallic phases formed during liquid quenching and solid state reactions. Mater Sci Eng-A, 1991, 133: 560–564CrossRefGoogle Scholar
  57. 57.
    Lee M, Bae D, Inoue A, et al. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829CrossRefGoogle Scholar
  58. 58.
    Xia L, Li W H, Fang S S, et al. Binary Ni-Nb bulk metallic glasses. J Appl Phys, 2006, 99: 026103CrossRefGoogle Scholar
  59. 59.
    Lee M H, Kim W T, Kim D H, et al. The effect of Al addition on the thermal properties and crystallization behavior of Ni60Nb40 metallic glass. Mater Sci Eng-A, 2004, 375–377: 336–340CrossRefGoogle Scholar
  60. 60.
    Petzoldt F. Synthesis and process characterization of mechanically alloyed amorphous Ni-Nb powders. J Less Common Met, 1988, 140: 85–92CrossRefGoogle Scholar
  61. 61.
    Tiainen T J, Schwarz R B. Synthesis and characterization of mechanically alloyed Ni-Sn powders. J Less Common Met, 1988, 140: 99–112CrossRefGoogle Scholar
  62. 62.
    Kosloske A M, Jewell P F, Florman A L, et al. Acute abdominal emergencies associated with cytomegalovirus infection in the young infant. Pediatr Surg Int, 1988, 3: 43–46CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bei Cai
    • 1
  • MengHao Yang
    • 1
  • JianBo Liu
    • 1
  • JiaHao Li
    • 1
  • BaiXin Liu
    • 1
  1. 1.Key Laboratory of Advanced Materials (MOE), School of Materials science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations