Advertisement

Effect of geometrical configurations on alkaline air-breathing membraneless microfluidic fuel cells with cylinder anodes

  • Biao Zhang
  • HaoNan Wang
  • Xun ZhuEmail author
  • DingDing YeEmail author
  • Qiang Liao
  • PangChieh Sui
  • Ned Djilali
  • Li Jiang
  • YaLu Fu
Article
  • 11 Downloads

Abstract

Membraneless microfluidic fuel cells (MMFCs) outperform traditional membrane-based micro-fuel cells in membraneless architecture and high surface-to-volume ratio and facile integration, but still need substantial improvement in performance. The fundamental challenges are dictated by multiphysics regarding cell configurations: the interaction of fluid flow, mass transport and electrochemical reactions. We present a numerical research that investigates the effect of geometrical configurations (rod arrangement, cell length, rod diameter and spacer configuration) on the fuel transport and performance of an alkaline MMFC with cylinder anodes. Modeling results suggest that the staggered rod arrangement outperforms the in-line case by 10.1% at 50 μL min–1. Cell power output and power density vary nearly linearly with the cell length. In the case with 0.7 mm anodes and 0.3 mm spacers, the increased flow resistance at anode region drives the fuel to intrude into the spacer zone, leading to fuel transport limitation at downstream. The feasibility of non-spacer configuration is demonstrated, and the power density is 93.7% higher than the baseline due to reduced cell volume and enhanced fuel transport. In addition, horizontal extension of the anode array is found to be more favorable for scale-up, the maximum power density of 181.9 mW cm–3 is predicted. This study provides insight into the fundamental, and offers guidance to improve the cell design for promoting performance and facilitating system integration.

Keywords

microfluidic fuel cell cylinder anode mass transport cell configuration computational model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11431_2018_9341_MOESM1_ESM.doc (1.5 mb)
Effect of geometrical configurations on alkaline air-breathing membraneless microfluidic fuel cells with cylinder anodes

References

  1. 1.
    Wang Y, Leung D Y C, Xuan J, et al. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renew Sustain Energy Rev, 2017, 75: 775–795CrossRefGoogle Scholar
  2. 2.
    Lee S H, Ahn Y. A laminar flow-based single stack of flow-over planar microfluidic fuel cells. J Power Sources, 2017, 351: 67–73CrossRefGoogle Scholar
  3. 3.
    Escalona-Villalpando R A, Reid R C, Milton R D, et al. Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J Power Sources, 2017, 342: 546–552CrossRefGoogle Scholar
  4. 4.
    Tanveer M, Kim K Y. Effects of geometric configuration of the channel and electrodes on the performance of a membraneless microfuel cell. Energy Convers Manage, 2017, 136: 372–381CrossRefGoogle Scholar
  5. 5.
    Galindo-de-la-Rosa J, Arjona N, Moreno-Zuria A, et al. Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids. Biosens Bioelectron, 2017, 92: 117–124CrossRefGoogle Scholar
  6. 6.
    Martins C A, Ibrahim O A, Pei P, et al. Towards a fuel-flexible direct alcohol microfluidic fuel cell with flow-through porous electrodes: Assessment of methanol, ethylene glycol and glycerol fuels. Electrochim Acta, 2018, 271: 537–543CrossRefGoogle Scholar
  7. 7.
    Yoon S K, Fichtl G W, Kenis P J A. Active control of the depletion boundary layers in microfluidic electrochemical reactors. Lab Chip, 2006, 6: 1516CrossRefGoogle Scholar
  8. 8.
    Jayashree R S, Gancs L, Choban E R, et al. Air-breathing laminar flow-based microfluidic fuel cell. J Am Chem Soc, 2005, 127: 16758–16759CrossRefGoogle Scholar
  9. 9.
    Mousavi Shaegh S A, Nguyen N T, Chan S H, et al. Air-breathing membraneless laminar flow-based fuel cell with flow-through anode. Int J Hydrogen Energy, 2012, 37: 3466–3476CrossRefGoogle Scholar
  10. 10.
    Kjeang E, Michel R, Harrington D A, et al. A microfluidic fuel cell with flow-through porous electrodes. J Am Chem Soc, 2008, 130: 4000–4006CrossRefGoogle Scholar
  11. 11.
    Kjeang E, Michel R, Harrington D A, et al. An alkaline microfluidic fuel cell based on formate and hypochlorite bleach. Electrochim Acta, 2008, 54: 698–705CrossRefGoogle Scholar
  12. 12.
    Kjeang E, McKechnie J, Sinton D, et al. Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. J Power Sources, 2007, 168: 379–390CrossRefGoogle Scholar
  13. 13.
    Zhang B, Ye D D, Li J, et al. Air-breathing microfluidic fuel cells with a cylinder anode operating in acidic and alkaline media. Electrochim Acta, 2015, 177: 264–269CrossRefGoogle Scholar
  14. 14.
    Arjona N, Goulet M A, Guerra-Balcazar M, et al. Direct formic acid microfluidic fuel cell with pd nanocubes supported on flow-through microporous electrodes. ECS Electrochem Lett, 2015, 4: F24–F28CrossRefGoogle Scholar
  15. 15.
    Zhang B, Ye D, Sui P C, et al. Computational modeling of airbreathing microfluidic fuel cells with flow-over and flow-through anodes. J Power Sources, 2014, 259: 15–24CrossRefGoogle Scholar
  16. 16.
    Wang Y, Leung D Y C, Xuan J, et al. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency. Appl Energy, 2015, 147: 456–465CrossRefGoogle Scholar
  17. 17.
    Gago A S, Morales-Acosta D, Arriaga L G, et al. Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell. J Power Sources, 2011, 196: 1324–1328CrossRefGoogle Scholar
  18. 18.
    Morales-Acosta D, Ledesma-Garcia J, Godinez L A, et al. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation. J Power Sources, 2010, 195: 461–465CrossRefGoogle Scholar
  19. 19.
    Zhang B, Ye D, Li J, et al. Electrodeposition of Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation. J Power Sources, 2012, 214: 277–284CrossRefGoogle Scholar
  20. 20.
    Jayashree R S, Egas D, Spendelow J S, et al. Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochem Solid-State Lett, 2006, 9: A252CrossRefGoogle Scholar
  21. 21.
    Choban E R, Spendelow J S, Gancs L, et al. Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochim Acta, 2005, 50: 5390–5398CrossRefGoogle Scholar
  22. 22.
    Hollinger A S, Maloney R J, Jayashree R S, et al. Nanoporous separator and low fuel concentration to minimize crossover in direct methanol laminar flow fuel cells. J Power Sources, 2010, 195: 3523–3528CrossRefGoogle Scholar
  23. 23.
    Sun F, He H, Huo W. Polymer separator and low fuel concentration to minimize crossover in microfluidic direct methanol fuel cells. Int J Energy Res, 2015, 39: 643–647CrossRefGoogle Scholar
  24. 24.
    Huo W, Zhou Y, Zhang H, et al. Microfluidic direct methanol fuel cell with ladder-shaped microchannel for decreased methanol crossover. Int J Electrochem Sci, 2013, 8: 4827–4838Google Scholar
  25. 25.
    López-Montesinos P O, Yossakda N, Schmidt A, et al. Design, fabrication, and characterization of a planar, silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section. J Power Sources, 2011, 196: 4638–4645CrossRefGoogle Scholar
  26. 26.
    Whipple D T, Jayashree R S, Egas D, et al. Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells. Electrochim Acta, 2009, 54: 4384–4388CrossRefGoogle Scholar
  27. 27.
    Kjeang E, Brolo A G, Harrington D A, et al. Hydrogen peroxide as an oxidant for microfluidic fuel cells. J Electrochem Soc, 2007, 154: B1220CrossRefGoogle Scholar
  28. 28.
    Zhu X, Zhang B, Ye D D, et al. Air-breathing direct formic acid microfluidic fuel cell with an array of cylinder anodes. J Power Sources, 2014, 247: 346–353CrossRefGoogle Scholar
  29. 29.
    Lee J W, Kjeang E. Chip-embedded thin film current collector for microfluidic fuel cells. Int J Hydrogen Energy, 2012, 37: 9359–9367CrossRefGoogle Scholar
  30. 30.
    Li L, Bei S, Xu Q, et al. Role of electrical resistance and geometry of porous electrodes in the performance of microfluidic fuel cells. Int J Energy Res, 2018, 42: 1277–1286CrossRefGoogle Scholar
  31. 31.
    Li L, Fan W, Xuan J, et al. Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: Model and experiment. Appl Energy, 2017, 206: 413–424CrossRefGoogle Scholar
  32. 32.
    Li L, Nikiforidis G, Leung M K H, et al. Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: Model, simulations and experiments. Appl Energy, 2016, 177: 729–739CrossRefGoogle Scholar
  33. 33.
    Wang Y, Leung D Y C, Zhang H, et al. Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell. Appl Energy, 2017, 203: 535–548CrossRefGoogle Scholar
  34. 34.
    Jayashree R S, Yoon S K, Brushett F R, et al. On the performance of membraneless laminar flow-based fuel cells. J Power Sources, 2010, 195: 3569–3578CrossRefGoogle Scholar
  35. 35.
    Fuerth D, Bazylak A. Up-scaled microfluidic fuel cells with porous flow-through electrodes. J Fluids Eng, 2013, 135: 021102CrossRefGoogle Scholar
  36. 36.
    Yang Y, Ye D, Liao Q, et al. Enhanced biofilm distribution and cell performance of microfluidic microbial fuel cells with multiple anolyte inlets. Biosens Bioelectron, 2016, 79: 406–410CrossRefGoogle Scholar
  37. 37.
    Marschewski J, Ruch P, Ebejer N, et al. On the mass transfer performance enhancement of membraneless redox flow cells with mixing promoters. Int J Heat Mass Transfer, 2017, 106: 884–894CrossRefGoogle Scholar
  38. 38.
    Kwok Y H, Wang Y F, Tsang A C H, et al. Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell. Appl Energy, 2018, 217: 258–265CrossRefGoogle Scholar
  39. 39.
    Kwok Y H, Tsang A C H, Wang Y, et al. Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell. J Power Sources, 2017, 349: 75–83CrossRefGoogle Scholar
  40. 40.
    Goulet M A, Ibrahim O A, Kim W H J, et al. Maximizing the power density of aqueous electrochemical flow cells with in operando deposition. J Power Sources, 2017, 339: 80–85CrossRefGoogle Scholar
  41. 41.
    Li Y, He Y, Yang W. A high-performance direct formate-peroxide fuel cell with palladium-gold alloy coated foam electrodes. J Power Sources, 2015, 278: 569–573CrossRefGoogle Scholar
  42. 42.
    Li Y, Feng Y, Sun X, et al. A sodium-ion-conducting direct formate fuel cell: Generating electricity and producing base. Angew Chem Int Ed, 2017, 56: 5734–5737CrossRefGoogle Scholar
  43. 43.
    Li Y, Sun X, Feng Y. Hydroxide self-feeding high-temperature alkaline direct formate fuel cells. ChemSusChem, 2017, 10: 2135–2139CrossRefGoogle Scholar
  44. 44.
    Ye D D, Zhang B, Zhu X, et al. Computational modeling of alkaline air-breathing microfluidic fuel cells with an array of cylinder anodes. J Power Sources, 2015, 288: 150–159CrossRefGoogle Scholar
  45. 45.
    Zhang L, Li J, Zhu X, et al. Anodic current distribution in a liter-scale microbial fuel cell with electrode arrays. Chem Eng J, 2013, 223: 623–631CrossRefGoogle Scholar
  46. 46.
    Krishnamurthy D, Johansson E O, Lee J W, et al. Computational modeling of microfluidic fuel cells with flow-through porous electrodes. J Power Sources, 2011, 196: 10019–10031CrossRefGoogle Scholar
  47. 47.
    Moore S, Sinton D, Erickson D. A plate-frame flow-through microfluidic fuel cell stack. J Power Sources, 2011, 196: 9481–9487CrossRefGoogle Scholar
  48. 48.
    Salloum K S, Posner J D. A membraneless microfluidic fuel cell stack. J Power Sources, 2011, 196: 1229–1234CrossRefGoogle Scholar
  49. 49.
    Wang H, Gu S, Leung D Y C, et al. Development and characteristics of a membraneless microfluidic fuel cell array. Electrochim Acta, 2014, 135: 467–477CrossRefGoogle Scholar
  50. 50.
    Ibrahim O A, Goulet M A, Kjeang E. Microfluidic electrochemical cell array in series: Effect of shunt current. J Electrochem Soc, 2015, 162: F639–F644CrossRefGoogle Scholar
  51. 51.
    Lu X, Wang Y, Leung D Y C, et al. A counter-flow-based dualelectrolyte protocol for multiple electrochemical applications. Appl Energy, 2018, 217: 241–248CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Biao Zhang
    • 1
    • 2
  • HaoNan Wang
    • 1
    • 2
  • Xun Zhu
    • 1
    • 2
    Email author
  • DingDing Ye
    • 1
    • 2
    Email author
  • Qiang Liao
    • 1
    • 2
  • PangChieh Sui
    • 3
  • Ned Djilali
    • 4
  • Li Jiang
    • 1
    • 2
  • YaLu Fu
    • 1
    • 2
  1. 1.Key Laboratory of Low-Grade Energy Utilization Technologies and SystemsChongqing UniversityChongqingChina
  2. 2.Institute of Engineering ThermophysicsChongqing UniversityChongqingChina
  3. 3.School of Automotive EngineeringWuhan University of TechnologyWuhanChina
  4. 4.Department of Mechanical Engineering, and Institute for Integrated Energy Systems (IESVic)University of VictoriaVictoriaCanada

Personalised recommendations