Science China Technological Sciences

, Volume 62, Issue 1, pp 1–20 | Cite as

Development of micro- and nanorobotics: A review

  • Jia Yang
  • Chuang Zhang
  • XiaoDong Wang
  • WenXue WangEmail author
  • Ning Xi
  • LianQing LiuEmail author


Micro- and nanorobotic is an emerging field of research arising from the cross-fusion of micro/nano technology and robotics and has become an important part of robotics. Micro- and nanorobots have the advantages of small size, low weight, large thrust-to-weight ratio, high flexibility, and high sensitivity. Due to the characteristics distinguishing from macroscopic robots, micro- and nanorobots have stimulated the research interest of the scientific community and opened up numerous application fields such as drug delivery and disease diagnosis. In the past 30 years, research on micro- and nanorobots has made considerable progress. This article provides a comprehensive overview of the development of these robots. First, the application of the robots is reviewed. Then, the key components of the robots are discussed separately, covering their actuation, design, fabrication and control. In addition, from the perspectives of intelligence and sensing, clinical applications, materials and performance, the challenges that may be encountered in the development of such robots in the future are discussed. Finally, the entire article is summarized, and concepts for future micro- and nanorobots are described.


micro- and nanorobots magnetic actuation manipulation biohybrid robot 


  1. 1.
    Sugiyama K, Yokoyama T, Koshiishi T, et al. US Patent, 7822508, 2010–10-26Google Scholar
  2. 2.
    Kanehiro F, Inaba M, Inoue H. Development of a two-armed bipedal robot that can walk and carry objects. In: The Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka: IEEE, 1996. 23–28Google Scholar
  3. 3.
    Wu Q, Liu Y J, Wu C S. An overview of current situations of robot industry development. In: The Proceedings of the ITM Web of Conferences. Wuhan: EDP Sciences, 2018Google Scholar
  4. 4.
    Foglia M M, Reina G. Agricultural robot for radicchio harvesting. J Field Robotics, 2006, 23: 363–377Google Scholar
  5. 5.
    Beasley R A. Medical robots: Current systems and research directions. Journal of Robotics, 2012, 14Google Scholar
  6. 6.
    Meng Q, Tholley I, Chung P W H. Robots learn to dance through interaction with humans. Neural Comput Applic, 2014, 24: 117–124Google Scholar
  7. 7.
    Palacin J, Salse J A, Valganon I, et al. Building a mobile robot for a floor-cleaning operation in domestic environments. IEEE Trans Instrum Meas, 2004, 53: 1418–1424Google Scholar
  8. 8.
    Playter R, Buehler M, Raibert M. Bigdog. In: The Proceedings of the Unmanned Systems Technology VIII: International Society for Optics and Photonics. Orlando: SPIE-International Society for Optical Engineering, 2006. 62302OGoogle Scholar
  9. 9.
    Tagliareni F, Nierlich M, Steinmetz O, et al. Manipulating biological cells with a micro-robot cluster. In: The Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton: IEEE, 2005. 1414–1419Google Scholar
  10. 10.
    Zhang M J, Tarn T J, Xi N. Micro/nano-devices for controlled drug delivery. In: 2004 IEEE International Conference on Robotics and Automation. IEEE, 2004. 2068–2073Google Scholar
  11. 11.
    Medina-Sánchez M, Xu H F, Schmidt O G. Micro-and nano-motors: The new generation of drug carriers. Ther Deliv, 2018, 9: 303–316Google Scholar
  12. 12.
    Chen X Z, Hoop M, Shamsudhin N, et al. Hybrid magnetoelectric nanowires for nanorobotic applications: Fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv Mater, 2017, 29: 1605458Google Scholar
  13. 13.
    Garcia-Gradilla V, Sattayasamitsathit S, Soto F, et al. Ultrasoundpropelled nanoporous gold wire for efficient drug loading and release. Small, 2014, 10: 4154–4159Google Scholar
  14. 14.
    Douglas S M, Bachelet I, Church G M. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335: 831–834Google Scholar
  15. 15.
    Fan D, Yin Z, Cheong R, et al. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat Nanotech, 2010, 5: 545–551Google Scholar
  16. 16.
    Ullrich F, Bergeles C, Pokki J, et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci, 2013, 54: 2853–2863Google Scholar
  17. 17.
    Solovev A A, Xi W, Gracias D H, et al. Self-propelled nanotools. ACS Nano, 2012, 6: 1751–1756Google Scholar
  18. 18.
    Fischer T, Agarwal A, Hess H. A smart dust biosensor powered by kinesin motors. Nat Nanotech, 2009, 4: 162–166Google Scholar
  19. 19.
    Esteban-Fernández de Á B, Martín A, Soto F, et al. Single cell realtime mirnas sensing based on nanomotors. ACS Nano, 2015, 9: 6756–6764Google Scholar
  20. 20.
    Davis M E, Chen Z G, Shin D M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov, 2008, 7: 771–782Google Scholar
  21. 21.
    Verma S K, Chauhan R. Nanorobotics in dentistry–A review. Ind J Dentistry, 2014, 5: 62–70Google Scholar
  22. 22.
    Cavalcanti A, Shirinzadeh B, Kretly L C. Medical nanorobotics for diabetes control. NanoMed-Nanotechnol Biol Med, 2008, 4: 127–138Google Scholar
  23. 23.
    Khulbe P. Nanorobots: A review. IJPSR, 2014, 5: 2164–2173Google Scholar
  24. 24.
    Cavalcanti A, Rosen L, Shirinzadeh B, et al. Nanorobot for treatment of patients with artery occlusion. In: Proceedings of Virtual Concept. Cancun: Springer, 2006Google Scholar
  25. 25.
    Molchanov P A, Asmolova O. Sense and avoid radar for micro/nano robots. In: Proceedings of the Unmanned/Unattended Sensors and Sensor Networks X. International Society for Optics and Photonics. Amsterdam: SPIE-International Society for Optical Engineering, 2014. 924807Google Scholar
  26. 26.
    Khurshid J, Bing-Rong H. Military robots-aglimpse from today and tomorrow. In: Proceedings of the Control, Automation, Robotics and Vision Conference. Kunming: IEEE, 2004. 771–777Google Scholar
  27. 27.
    Rahul V A. A brief review on nanorobots. SSRG-IJME, 2017, 4: 15–21Google Scholar
  28. 28.
    Sharma N, Mittal R. Nanorobot movement: Challenges and biologically inspired solutions. Int J Smart Sensing Intell Syst, 2008, 1: 87–109Google Scholar
  29. 29.
    Clayden J, Pink J H. Concerted rotation in a tertiary aromatic amide: Towards a simple molecular gear. Angew Chem Int Ed, 1998, 37: 1937–1939Google Scholar
  30. 30.
    Fukuda T, Arai F, Lixin Dong F. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc IEEE, 2003, 9: 1803–1818Google Scholar
  31. 31.
    Li J, Zhang Y, To S, et al. Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity. ACS Nano, 2011, 5: 6661–6668Google Scholar
  32. 32.
    Ancel A O, Zufferey R, Siddall R, et al. Bio-inspired aquatic micro air vehicle for environmental monitoring and disaster relief. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018Google Scholar
  33. 33.
    Chałupniak A, Morales-Narváez E, Merkoçi A. Micro and nanomotors in diagnostics. Adv Drug Deliver Rev, 2015, 95: 104–116Google Scholar
  34. 34.
    Drexler K E. Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York: John Wiley & Sons, 1992Google Scholar
  35. 35.
    Purcell E M. Life at low reynolds number. Am J Phys, 1977, 45: 3–11Google Scholar
  36. 36.
    Wautelet M. Scaling laws in the macro-, micro- and nanoworlds. Eur J Phys, 2001, 22: 601Google Scholar
  37. 37.
    Wang Q, Liew K M. Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A, 2007, 363: 236–242Google Scholar
  38. 38.
    Y S Song, Sitti M. Surface-tension-driven biologically inspired water strider robots: Theory and experiments. IEEE Trans Robot, 2007, 23: 578–589Google Scholar
  39. 39.
    Maugis D. Adhesion of spheres: The JKR-DMT transition using a dugdale model. J Colloid Interface Sci, 1992, 150: 243–269Google Scholar
  40. 40.
    Sitti M, Hashimoto H. Teleoperated touch feedback from the surfaces at the nanoscale: Modeling and experiments. IEEE/ASME Trans Mechatron, 2003, 8: 287–298Google Scholar
  41. 41.
    Gauthier M, Chaillet N, Régnier S, et al. Analysis of forces for micromanipulations in dry and liquid media. J Micromechatronics, 2006, 3: 389–413Google Scholar
  42. 42.
    Yang J, Yang Y, Waltermire S W, et al. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat Nanotech, 2012, 7: 91–95Google Scholar
  43. 43.
    Pakarinen O H, Foster A S, Paajanen M, et al. Towards an accurate description of the capillary force in nanoparticle-surface interactions. Model Simul Mater Sci Eng, 2005, 13: 1175–1186Google Scholar
  44. 44.
    Belaidi S, Girard P, Leveque G. Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions. J Appl Phys, 1997, 81: 1023–1030Google Scholar
  45. 45.
    Gady B, Schleef D, Reifenberger R, et al. Identification of electrostatic and van der Waals interaction forces between a micrometersize sphere and a flat substrate. Phys Rev B, 1996, 53: 8065–8070Google Scholar
  46. 46.
    Zhou Q, Chang B, Koivo H N. Temperature and humidity effects on micro/nano handling. Mater Sci Forum, 2006, 532–533: 681–684Google Scholar
  47. 47.
    Tambe N S, Bhushan B. Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology, 2004, 15: 1561–1570Google Scholar
  48. 48.
    Nelson B J, Kaliakatsos I K, Abbott J J. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng, 2010, 12: 55–85Google Scholar
  49. 49.
    Tottori S, Zhang L, Nelson B J. Wireless Actuation of Micro/nanorobots for Medical Applications. New York: Springer, 2014. 171–189Google Scholar
  50. 50.
    Li J, Esteban-Fernández de Ávila B, Gao W, et al. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot, 2017, 2: eaam6431Google Scholar
  51. 51.
    Floyd S, Pawashe C, Sitti M. Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. IEEE Trans Robot, 2009, 25: 1332–1342Google Scholar
  52. 52.
    Tottori S, Zhang L, Qiu F, et al. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv Mater, 2012, 24: 811–816Google Scholar
  53. 53.
    Peyer K E, Tottori S, Qiu F, et al. Magnetic helical micromachines. Chem Eur J, 2013, 19: 28–38Google Scholar
  54. 54.
    Qiu F, Fujita S, Mhanna R, et al. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater, 2015, 25: 1666–1671Google Scholar
  55. 55.
    Servant A, Qiu F, Mazza M, et al. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater, 2015, 27: 2981–2988Google Scholar
  56. 56.
    Hoop M, Ribeiro A S, Rösch D, et al. Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv Funct Mater, 2018Google Scholar
  57. 57.
    Li T, Li J, Morozov K I, et al. Highly efficient freestyle magnetic nanoswimmer. Nano Lett, 2017, 17: 5092–5098Google Scholar
  58. 58.
    Diller E, Sitti M. Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Funct Mater, 2014, 24: 4397–4404Google Scholar
  59. 59.
    Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotech, 2016, 11: 941–947Google Scholar
  60. 60.
    Magdanz V, Sanchez S, Schmidt O G. Development of a spermflagella driven micro-bio-robot. Adv Mater, 2013, 25: 6581–6588Google Scholar
  61. 61.
    Zhang C, Khoshmanesh K, Mitchell A, et al. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem, 2010, 396: 401–420Google Scholar
  62. 62.
    Fan D L, Zhu F Q, Cammarata R C, et al. Electric tweezers. Nano Today, 2011, 6: 339–354Google Scholar
  63. 63.
    Donald B R, Levey C G, McGray C D, et al. Power delivery and locomotion of untethered microactuators. J Microelectromech Syst, 2003, 12: 947–959Google Scholar
  64. 64.
    Donald B R, Levey C G, McGray C D, et al. An untethered, electrostatic, globally controllable MEMS micro-robot. J Microelectromech Syst, 2006, 15: 1–15Google Scholar
  65. 65.
    Nawroth J C, Lee H, Feinberg A W, et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol, 2012, 30: 792–797Google Scholar
  66. 66.
    Radisic M, Park H, Shing H, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA, 2004, 101: 18129–18134Google Scholar
  67. 67.
    Bhana B, Iyer R K, Chen W L K, et al. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng, 2010, 105: 1148–1160Google Scholar
  68. 68.
    Ahadian S, Ramón-Azcón J, Ostrovidov S, et al. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab Chip, 2012, 12: 3491–3503Google Scholar
  69. 69.
    Hwang G, Haliyo D S, Régnier S. Remotely powered propulsion of helical nanobelts. In: The Proceedings of the Robotics: Science and Systems VI. Zaragoza: 2010Google Scholar
  70. 70.
    Vasudev A, Zhe J. A capillary microgripper based on electrowetting. Appl Phys Lett, 2008, 93: 103503Google Scholar
  71. 71.
    Schaler E, Tellers M, Gerratt A, et al. Toward fluidic microrobots using electrowetting. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012. 3461–3466Google Scholar
  72. 72.
    Rubinsztein-Dunlop H, Freise M E J. Light-driven micromachines. Optics Photonics News, 2002, 13: 22–26Google Scholar
  73. 73.
    Han D D, Zhang Y L, Ma J N, et al. Light-mediated manufacture and manipulation of actuators. Adv Mater, 2016, 28: 8328–8343Google Scholar
  74. 74.
    Xu L, Mou F, Gong H, et al. Light-driven micro/nanomotors: From fundamentals to applications. Chem Soc Rev, 2017, 46: 6905–6926Google Scholar
  75. 75.
    Glückstad J, Palima D, Banas A. Light robotics: Aiming towards alloptical nano-robotics. In: The Proceedings of the Optical Manipulation Conference. International Society for Optics and Photonics. Yokohama: SPIE-International Society for Optical Engineering, 2017. 102520CGoogle Scholar
  76. 76.
    Glückstad J, Villangca M, Palima D, et al. Light robotics: An alloptical nano-and micro-toolbox. In: The Proceedings of the Complex Light and Optical Forces XI. International Society for Optics and Photonics. San Francisco: SPIE-International Society for Optical Engineering. 2017. 101201AGoogle Scholar
  77. 77.
    Villangca M J, Palima D, Bañas A R, et al. Light-driven micro-tool equipped with a syringe function. Light Sci Appl, 2016, 5: e16148Google Scholar
  78. 78.
    Chiang P T, Mielke J, Godoy J, et al. Toward a light-driven motorized nanocar: Synthesis and initial imaging of single molecules. ACS Nano, 2011, 6: 592–597Google Scholar
  79. 79.
    Ibele M, Mallouk T E, Sen A. Schooling behavior of light-powered autonomous micromotors in water. Angew Chem Int Ed, 2009, 48: 3308–3312Google Scholar
  80. 80.
    Huang C, Lv J, Tian X, et al. A remotely driven and controlled micro-gripper fabricated from light-induced deformation smart material. Smart Mater Struct, 2016, 25: 095009Google Scholar
  81. 81.
    Ikuta K, Sato F, Kadoguchi K, et al. Optical driven master-slave controllable nano-manipulator with real-time force sensing. In: The Proceedings of the IEEE 21st International Conference on Micro Electro Mechanical Systems. Wuhan: IEEE, 2008. 539–542Google Scholar
  82. 82.
    Ikeuchi M, Isozaki K, Kyue K, et al. Multifunctional optically driven microrobot for realtime 3D bio-manipulation and imaging. In: The Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems. Cancun: IEEE, 2011. 29–32Google Scholar
  83. 83.
    Glückstad J. Light driven micro-robotics with holographic 3D tracking. In: The Proceedings of the Optical Pattern Recognition XXVII. International Society for Optics and Photonics. Baltimore: SPIE-International Society for Optical Engineering, 2016. 984503Google Scholar
  84. 84.
    Huang C, Lv J A, Tian X, et al. Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci Rep, 2015, 5: 17414Google Scholar
  85. 85.
    Palagi S, Mark A G, Reigh S Y, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater, 2016, 15: 647–653Google Scholar
  86. 86.
    Koumura N, Zijlstra R W J, van Delden R A, et al. Light-driven monodirectional molecular rotor. Nature, 1999, 401: 152–155Google Scholar
  87. 87.
    Rodrigo J A, Alieva T. Light-driven transport of plasmonic nanoparticles on demand. Sci Rep, 2016, 6: 33729Google Scholar
  88. 88.
    Liu M, Zentgraf T, Liu Y, et al. Light-driven nanoscale plasmonic motors. Nat Nanotech, 2010, 5: 570–573Google Scholar
  89. 89.
    Hu W, Ishii K S, Ohta A T. Micro-assembly using optically controlled bubble microrobots. Appl Phys Lett, 2011, 99: 094103Google Scholar
  90. 90.
    Zhang C, Xie S X, Wang W X, et al. Bio-syncretic tweezers actuated by microorganisms: Modeling and analysis. Soft Matter, 2016, 12: 7485–7494Google Scholar
  91. 91.
    Dai B, Wang J, Xiong Z, et al. Programmable artificial phototactic microswimmer. Nat Nanotech, 2016, 11: 1087–1092Google Scholar
  92. 92.
    Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci, 2011, 34: 389–412Google Scholar
  93. 93.
    Deisseroth K. Optogenetics. Nat Methods, 2011, 8: 26–29Google Scholar
  94. 94.
    Sakar M S, Neal D, Boudou T, et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip, 2012, 12: 4976–4985Google Scholar
  95. 95.
    Kim H, Neal D, Asada H H. Towards the development of optogenetically- controlled skeletal muscle actuators. In: The Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Palo Alto: American Society of Mechanical Engineers, 2013. V002T029A005–V002T029A005Google Scholar
  96. 96.
    Raman R, Grant L, Seo Y, et al. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv Healthcare Mater, 2017, 6: 1700030Google Scholar
  97. 97.
    Magdanz V, Stoychev G, Ionov L, et al. Stimuli-responsive microjets with reconfigurable shape. Angew Chem Int Ed, 2014, 53: 2673–2677Google Scholar
  98. 98.
    Mallea R T, Bolopion A, Beugnot J-C, et al. 1D manipulation of a micrometer size particle actuated via thermocapillary convective flows. In: The Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017. 408–413Google Scholar
  99. 99.
    Shirai Y, Osgood A J, Zhao Y, et al. Directional control in thermally driven single-molecule nanocars. Nano Lett, 2005, 5: 2330–2334Google Scholar
  100. 100.
    Cai K, Yu J, Shi J, et al. Spectrum of temperature-dependent rotational frequency of the rotor in a thermally diven rotary nanomotor. J Phys Chem C, 2017, 121: 16985–16995Google Scholar
  101. 101.
    Jager E W H. Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science, 2000, 288: 2335–2338Google Scholar
  102. 102.
    Chan H Y, Li W J. A thermally actuated polymer micro robotic gripper for manipulation of biological cells. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Taipei: IEEE, 2003. 288–293Google Scholar
  103. 103.
    Gultepe E, Randhawa J S, Kadam S, et al. Biopsy with thermallyresponsive untethered microtools. Adv Mater, 2013, 25: 514–519Google Scholar
  104. 104.
    Xu T, Xu L P, Zhang X. Ultrasound propulsion of micro-/nanomotors. Appl Mater Today, 2017, 9: 493–503Google Scholar
  105. 105.
    Ahmed D, Baasch T, Jang B, et al. Artificial swimmers propelled by acoustically activated flagella. Nano Lett, 2016, 16: 4968–4974Google Scholar
  106. 106.
    Rao K J, Li F, Meng L, et al. A force to be reckoned with: A review of synthetic microswimmers powered by ultrasound. Small, 2015, 11: 2836–2846Google Scholar
  107. 107.
    Melde K, Mark A G, Qiu T, et al. Holograms for acoustics. Nature, 2016, 537: 518–522Google Scholar
  108. 108.
    Ding X, Lin S C S, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci USA, 2012, 109: 11105–11109Google Scholar
  109. 109.
    Wang W, Castro L A, Hoyos M, et al. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano, 2012, 6: 6122–6132Google Scholar
  110. 110.
    Garcia-Gradilla V, Sattayasamitsathit S, Soto F, et al. Ultrasoundpropelled nanoporous gold wire for efficient drug loading and release. Small, 2014, 10: 4154–4159Google Scholar
  111. 111.
    Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, et al. Functionalized ultrasound-propelled magnetically guided nanomotors: Toward practical biomedical applications. ACS Nano, 2013, 7: 9232–9240Google Scholar
  112. 112.
    Kwan J J, Myers R, Coviello C M, et al. Ultrasound-propelled nanocups for drug delivery. Small, 2015, 11: 5305–5314Google Scholar
  113. 113.
    Soto F, Martin A, Ibsen S, et al. Acoustic microcannons: Toward advanced microballistics. ACS Nano, 2015, 10: 1522–1528Google Scholar
  114. 114.
    Kagan D, Benchimol M J, Claussen J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem, 2012, 124: 7637–7640Google Scholar
  115. 115.
    Wang W, Li S, Mair L, et al. Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed, 2014, 53: 3201–3204Google Scholar
  116. 116.
    Esteban-Fernández de Ávila B, Angell C, Soto F, et al. Acoustically propelled nanomotors for intracellular sirna delivery. ACS Nano, 2016, 10: 4997–5005Google Scholar
  117. 117.
    Diller E. Micro-scale mobile robotics. FNT Robotics, 2013, 2: 143–259Google Scholar
  118. 118.
    Breguet J M, Driesen W, Kaegi F, et al. Applications of piezo-actuated micro-robots in micro-biology and material science. In: The Proceedings of the International Conference on Mechatronics and Automation. Harbin: IEEE, 2007. 57–62Google Scholar
  119. 119.
    Jain R K, Majumder S, Ghosh B. Design and analysis of piezoelectric actuator for micro gripper. Int J Mech Mater Des, 2015, 11: 253–276Google Scholar
  120. 120.
    Zubir M N M, Shirinzadeh B, Tian Y. A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mechanism Machine Theor, 2009, 44: 2248–2264zbMATHGoogle Scholar
  121. 121.
    Nah S K, Zhong Z W. A microgripper using piezoelectric actuation for micro-object manipulation. Senss Actuators A-Phys, 2007, 133: 218–224Google Scholar
  122. 122.
    Haddab Y, Chaillet N, Bourjault A. A microgripper using smart piezoelectric actuators. In: The Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu: IEEE, 2000. 659–664Google Scholar
  123. 123.
    Lee A P, Ciarlo D R, Krulevitch P A, et al. A practical microgripper by fine alignment, eutectic bonding and SMA actuation. Senss Actuators A-Phys, 1996, 54: 755–759Google Scholar
  124. 124.
    Hoche J H, Buettgenbach S, Pittschellis R, et al. Silicon microgripper for microassembly realized by photolithography and fast anisotropic silicon etching. In: The Proceedings of the Microrobotics and Micromanipulation. International Society for Optics and Photonics. Boston: SPIE-International Society for Optical Engineering, 1998. 13–22Google Scholar
  125. 125.
    MacKenzie M H, An N M, Giere M D, et al. Experiences with shape memory alloy: Robot grippers for submillimeter hard disk drive components. In: The Proceedings of the Microrobotics: Components and Applications. International Society for Optics and Photonics. Boston: SPIE-International Society for Optical Engineering, 1996. 25–37Google Scholar
  126. 126.
    Kim B, Lee M G, Lee Y P, et al. An earthworm-like micro robot using shape memory alloy actuator. Senss Actuators A-Phys, 2006, 125: 429–437Google Scholar
  127. 127.
    Kim B, Lee S, Park J H, et al. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE/ASME Trans Mechatron, 2005, 10: 77–86Google Scholar
  128. 128.
    Moo J G S, Pumera M. Chemical energy powered nano/micro/macromotors and the environment. Chem Eur J, 2015, 21: 58–72Google Scholar
  129. 129.
    Sánchez S, Soler L, Katuri J. Chemically powered micro- and nanomotors. Angew Chem Int Edit, 2015, 54: 1414–1444Google Scholar
  130. 130.
    Gao W, Sattayasamitsathit S, Wang J. Catalytically propelled micro-/nanomotors: How fast can they move? Chem Rec, 2012, 12: 224–231Google Scholar
  131. 131.
    Patel G M, Patel G C, Patel R B, et al. Nanorobot: A versatile tool in nanomedicine. J Drug Targeting, 2006, 14: 63–67Google Scholar
  132. 132.
    Li L, Wang J, Li T, et al. A unified model of drag force for bubble-propelled catalytic micro/nano-motors with different geometries in low reynolds number flows. J Appl Phys, 2015, 117: 104308Google Scholar
  133. 133.
    Moran J L, Posner J D. Phoretic self-propulsion. Annu Rev Fluid Mech, 2017, 49: 511–540MathSciNetzbMATHGoogle Scholar
  134. 134.
    Kagan D, Balasubramanian S, Wang J. Chemically triggered swarming of gold microparticles. Angew Chem Int Ed, 2011, 50: 503–506Google Scholar
  135. 135.
    Van Nguyen K, Minteer S D. DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: Toward signal-on motion-based DNA biosensor. Chem Commun, 2015, 51: 4782–4784Google Scholar
  136. 136.
    Wang L, Li L, Li T, et al. Locomotion of chemically powered autonomous nanowire motors. Appl Phys Lett, 2015, 107: 063102Google Scholar
  137. 137.
    Sánchez S, Pumera M. Nanorobots: The ultimate wireless self-propelled sensing and actuating devices. Chem Asian J, 2009, 4: 1402–1410Google Scholar
  138. 138.
    Randhawa J S, Leong T G, Bassik N, et al. Pick-and-place using chemically actuated microgrippers. J Am Chem Soc, 2008, 130: 17238–17239Google Scholar
  139. 139.
    Bassik N, Brafman A, Zarafshar A M, et al. Enzymatically triggered actuation of miniaturized tools. J Am Chem Soc, 2010, 132: 16314–16317Google Scholar
  140. 140.
    Teo W Z, Wang H, Pumera M. Beyond platinum: Silver-catalyst based bubble-propelled tubular micromotors. Chem Commun, 2016, 52: 4333–4336Google Scholar
  141. 141.
    Xu T, Soto F, Gao W, et al. Ultrasound-modulated bubble propulsion of chemically powered microengines. J Am Chem Soc, 2014, 136: 8552–8555Google Scholar
  142. 142.
    Gao W, Sattayasamitsathit S, Orozco J, et al. Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc, 2011, 133: 11862–11864Google Scholar
  143. 143.
    Solovev A A, Mei Y, Bermúdez Ureña E, et al. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small, 2009, 5: 1688–1692Google Scholar
  144. 144.
    Li J, Rozen I, Wang J. Rocket science at the nanoscale. ACS Nano, 2016, 10: 5619–5634Google Scholar
  145. 145.
    Gao W, Pei A, Wang J. Water-driven micromotors. ACS Nano, 2012, 6: 8432–8438Google Scholar
  146. 146.
    Gibbs J, Zhao Y. Catalytic nanomotors: Fabrication, mechanism, and applications. Front Mater Sci, 2011, 5: 25–39Google Scholar
  147. 147.
    Bao J, Yang Z, Nakajima M, et al. Self-actuating asymmetric platinum catalytic mobile nanorobot. IEEE Trans Robot, 2014, 30: 33–39Google Scholar
  148. 148.
    Paxton W F, Kistler K C, Olmeda C C, et al. Catalytic nanomotors: Autonomous movement of striped nanorods. J Am Chem Soc, 2004, 126: 13424–13431Google Scholar
  149. 149.
    Qin W W, Sun L L, Peng T H, et al. Recent progresses in molecule motors driven by enzymatic reactions. Chin J Anal Chem, 2016, 44: 1133–1139Google Scholar
  150. 150.
    Wang W, Duan W, Ahmed S, et al. Small power: Autonomous nanoand micromotors propelled by self-generated gradients. Nano Today, 2013, 8: 531–554Google Scholar
  151. 151.
    Xu T, Soto F, Gao W, et al. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J Am Chem Soc, 2015, 137: 2163–2166Google Scholar
  152. 152.
    Baylis J R, Chan K Y T, Kastrup C J. Halting hemorrhage with selfpropelling particles and local drug delivery. Thrombosis Res, 2016, 141: S36–S39Google Scholar
  153. 153.
    Wang H, Zhao G, Pumera M. Crucial role of surfactants in bubblepropelled microengines. J Phys Chem C, 2014, 118: 5268–5274Google Scholar
  154. 154.
    Hosseinidoust Z, Mostaghaci B, Yasa O, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliver Rev, 2016, 106: 27–44Google Scholar
  155. 155.
    Carlsen R W, Sitti M. Bio-hybrid cell-based actuators for microsystems. Small, 2014, 10: 3831–3851Google Scholar
  156. 156.
    Tanaka Y, Sato K, Shimizu T, et al. Biological cells on microchips: New technologies and applications. Biosens Bioelectron, 2007, 23: 449–458Google Scholar
  157. 157.
    Martel S. Bacterial microsystems and microrobots. Biomed Microdevices, 2012, 14: 1033–1045Google Scholar
  158. 158.
    Zhuang J, Sitti M. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers. Sci Rep, 2016, 6: 32135Google Scholar
  159. 159.
    Singh A V, Sitti M. Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers. Adv Healthcare Mater, 2016, 5: 2325–2331Google Scholar
  160. 160.
    Thubagere A J, Li W, Johnson R F, et al. A cargo-sorting DNA robot. Science, 2017, 357: eaan6558Google Scholar
  161. 161.
    Darnton N, Turner L, Breuer K, et al. Moving fluid with bacterial carpets. BioPhys J, 2004, 86: 1863–1870Google Scholar
  162. 162.
    Behkam B, Sitti M. Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett, 2007, 90: 023902Google Scholar
  163. 163.
    Behkam B, Sitti M. Towards hybrid swimming microrobots: Bacteria assisted propulsion of polystyrene beads. In: The Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2006. 2421–2424Google Scholar
  164. 164.
    Park B W, Zhuang J, Yasa O, et al. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano, 2017, 11: 8910–8923Google Scholar
  165. 165.
    Park D, Park S J, Cho S, et al. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber. Biotechnol Bioeng, 2014, 111: 134–143Google Scholar
  166. 166.
    Cho S, Park S J, Ko S Y, et al. Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed Microdevices, 2012, 14: 1019–1025Google Scholar
  167. 167.
    Kojima M, Zhang Z, Nakajima M, et al. Construction and evaluation of bacteria-driven liposome. Senss Actuators B-Chem, 2013, 183: 395–400Google Scholar
  168. 168.
    Weibel D B, Garstecki P, Ryan D, et al. Microoxen: Microorganisms to move microscale loads. Proc Natl Acad Sci USA, 2005, 102: 11963–11967Google Scholar
  169. 169.
    Martel S. Towards MRI-controlled ferromagnetic and MC-1 magnetotactic bacterial carriers for targeted therapies in arteriolocapillar networks stimulated by tumoral angiogenesis. In: The Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2006. 3399–3402Google Scholar
  170. 170.
    Martel S, Mohammadi M. Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010. 500–505Google Scholar
  171. 171.
    Hu C, Pané S, Nelson B J. Soft micro- and nanorobotics. Annu Rev Control Robot Auton Syst, 2018, 1: 53–75Google Scholar
  172. 172.
    Xi J, Schmidt J J, Montemagno C D. Self-assembled microdevices driven by muscle. Nat Mater, 2005, 4: 180–184Google Scholar
  173. 173.
    Tam D, Hosoi A E. Optimal kinematics and morphologies for spermatozoa. Phys Rev E, 2011, 83: 045303Google Scholar
  174. 174.
    Magdanz V, Guix M, Schmidt O G. Tubular micromotors: From microjets to spermbots. Robot Biomim, 2014, 1: 11Google Scholar
  175. 175.
    Magdanz V, Medina-Sánchez M, Chen Y, et al. How to improve spermbot performance. Adv Funct Mater, 2015, 25: 2763–2770Google Scholar
  176. 176.
    Li D, Choi H, Cho S, et al. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy. Biotechnol Bioeng, 2015, 112: 1623–1631Google Scholar
  177. 177.
    Gao W, Manesh K M, Hua J, et al. Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small, 2011, 7: 2047–2051Google Scholar
  178. 178.
    Li H, Go G, Ko S Y, et al. Magnetic actuated pH-responsive hydrogel- based soft micro-robot for targeted drug delivery. Smart Mater Struct, 2016, 25: 027001Google Scholar
  179. 179.
    Ivan I A, Hwang G, Agnus J, et al. First experiments on magpier: A planar wireless magnetic and piezoelectric microrobot. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011. 102–108Google Scholar
  180. 180.
    Li J, Li T, Xu T, et al. Magneto-acoustic hybrid nanomotor. Nano Lett, 2015, 15: 4814–4821Google Scholar
  181. 181.
    Ahmed D, Dillinger C, Hong A, et al. Artificial acousto-magnetic soft microswimmers. Adv Mater Technol, 2017, 2: 1700050Google Scholar
  182. 182.
    Fusco S, Sakar M S, Kennedy S, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv Mater, 2014, 26: 952–957Google Scholar
  183. 183.
    Zhou D, Ren L, Li Y C, et al. Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chem Commun, 2017, 53: 11465–11468Google Scholar
  184. 184.
    Ren L, Zhou D, Mao Z, et al. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power. ACS Nano, 2017, 11: 10591–10598Google Scholar
  185. 185.
    Zheng J, Dai B, Wang J, et al. Orthogonal navigation of multiple visible-light-driven artificial microswimmers. Nat Commun, 2017, 8: 1438Google Scholar
  186. 186.
    Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455Google Scholar
  187. 187.
    Chronis N, Lee L P. Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst, 2005, 14: 857–863Google Scholar
  188. 188.
    Mølhave K, Hansen O. Electrothermally actuated microgrippers with integrated force-feedback. J Micromech Microeng, 2005, 15: 1265–1270Google Scholar
  189. 189.
    Sul O J, Falvo M R, Taylor Ii R M, et al. Thermally actuated untethered impact-driven locomotive microdevices. Appl Phys Lett, 2006, 89: 203512Google Scholar
  190. 190.
    Schalley C A, Beizai K, Vögtle F. On the way to rotaxane-based molecular motors: Studies in molecular mobility and topological chirality. Acc Chem Res, 2001, 34: 465–476Google Scholar
  191. 191.
    Klapper Y, Sinha N, Ng T W S, et al. A rotational DNA nanomotor driven by an externally controlled electric field. Small, 2010, 6: 44–47Google Scholar
  192. 192.
    Kim K, Xu X, Guo J, et al. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat Commun, 2014, 5: 3632Google Scholar
  193. 193.
    Sundararajan S, Lammert P E, Zudans A W, et al. Catalytic motors for transport of colloidal cargo. Nano Lett, 2008, 8: 1271–1276Google Scholar
  194. 194.
    Kagan D, Calvo-Marzal P, Balasubramanian S, et al. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. J Am Chem Soc, 2009, 131: 12082–12083Google Scholar
  195. 195.
    Gao W, Sattayasamitsathit S, Manesh K M, et al. Magnetically powered flexible metal nanowire motors. J Am Chem Soc, 2010, 132: 14403–14405Google Scholar
  196. 196.
    Schoevaars A M, Kruizinga W, Zijlstra R W, et al. Toward a switchable molecular rotor–Unexpected dynamic behavior of functionalized overcrowded alkenes. J Org Chem, 1997, 62: 4943–4948Google Scholar
  197. 197.
    Fournier-Bidoz S, Arsenault A C, Manners I, et al. Synthetic selfpropelled nanorotors. Chem Commun, 2005, 441–443Google Scholar
  198. 198.
    Fan D L, Zhu F Q, Cammarata R C, et al. Controllable high-speed rotation of nanowires. Phys Rev Lett, 2005, 94: 247208Google Scholar
  199. 199.
    Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett, 2009, 9: 2243–2245Google Scholar
  200. 200.
    Ghosh A, Paria D, Singh H J, et al. Dynamical configurations and bistability of helical nanostructures under external torque. Phys Rev E, 2012, 86: 031401Google Scholar
  201. 201.
    Muraoka T, Kinbara K, Kobayashi Y, et al. Light-driven open-close motion of chiral molecular scissors. J Am Chem Soc, 2003, 125: 5612–5613Google Scholar
  202. 202.
    Muraoka T, Kinbara K, Aida T. Mechanical twisting of a guest by a photoresponsive host. Nature, 2006, 440: 512–515Google Scholar
  203. 203.
    Kelly T R, Sestelo J P, Tellitu I. New molecular devices: In search of a molecular ratchet. J Org Chem, 1998, 63: 3655–3665Google Scholar
  204. 204.
    Di Leonardo R, Angelani L, Dell’arciprete D, et al. Bacterial ratchet motors. Proc Natl Acad Sci USA, 2010, 107: 9541–9545Google Scholar
  205. 205.
    Bissell R A, Córdova E, Kaifer A E, et al. A chemically and electrochemically switchable molecular shuttle. Nature, 1994, 369: 133–137Google Scholar
  206. 206.
    Bedard T C, Moore J S. Design and synthesis of molecular turnstiles.. J Am Chem Soc, 1995, 117: 10662–10671Google Scholar
  207. 207.
    Badjic J D, Balzani V, Credi A, et al. A molecular elevator. Science, 2004, 303: 1845–1849Google Scholar
  208. 208.
    Badjic J D, Ronconi C M, Stoddart J F, et al. Operating molecular elevators. J Am Chem Soc, 2006, 128: 1489–1499Google Scholar
  209. 209.
    Campuzano S, Esteban-Fernández de Ávila B, Yáñez-Sedeño P, et al. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level. Chem Sci, 2017, 8: 6750–6763Google Scholar
  210. 210.
    Gimzewski J K, Joachim C, Schlittler R R, et al. Rotation of a single molecule within a supramolecular bearing. Science, 1998, 281: 531–533Google Scholar
  211. 211.
    Bhushan B. Biomimetics: Lessons from nature–An overview. Philos T R Soc A, 2009, 367: 1445–1486Google Scholar
  212. 212.
    Cho K J, Koh J S, Kim S, et al. Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf, 2009, 10: 171–181Google Scholar
  213. 213.
    Chu W S, Lee K T, Song S H, et al. Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Manuf, 2012, 13: 1281–1292Google Scholar
  214. 214.
    Dreyfus R, Baudry J, Roper M L, et al. Microscopic artificial swimmers. Nature, 2005, 437: 862–865Google Scholar
  215. 215.
    Peyer K E, Zhang L, Nelson B J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 2013, 5: 1259–1272Google Scholar
  216. 216.
    Huang H W, Sakar M S, Petruska A J, et al. Soft micromachines with programmable motility and morphology. Nat Commun, 2016, 7: 12263Google Scholar
  217. 217.
    Sing C E, Schmid L, Schneider M F, et al. Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc Natl Acad Sci USA, 2010, 107: 535–540Google Scholar
  218. 218.
    Kim S, Lee S, Lee J, et al. Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci Rep, 2016, 6: 30713Google Scholar
  219. 219.
    Zhang H, Guo D J, Dai Z D. Progress on gecko-inspired micro/nanoadhesion arrays. Chin Sci Bull, 2010, 55: 1843–1850Google Scholar
  220. 220.
    Lee Y P, Kim B, Lee M G, et al. Locomotive mechanism design and fabrication of biomimetic micro robot using shape memory alloy. In: The Proceedings of the IEEE International Conference on Robotics and Automation. New Orleans: IEEE, 2004. 5007–5012Google Scholar
  221. 221.
    Li J J, Tan W. A single DNA molecule nanomotor. Nano Lett, 2002, 2: 315–318Google Scholar
  222. 222.
    Kim B, Lee S, Park J H, et al. Inchworm-like microrobot for capsule endoscope. In: The Proceedings of the IEEE International Conference on Robotics and Biomimetics. Shenyang: IEEE, 2004. 458–463Google Scholar
  223. 223.
    Karagozler M E, Cheung E, Kwon J, et al. Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives. In: The Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa: IEEE, 2006. 105–111Google Scholar
  224. 224.
    Menon C, Vincent J, Lan N, et al. Bio-inspired micro-drills for future planetary exploration. In: The Proceedings of the CANEUS 2006: MNT for Aerospace Applications. Toulouse: American Society of Mechanical Engineers, 2006. 117–128Google Scholar
  225. 225.
    Keennon M, Klingebiel K, Won H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In: The Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville: American Institute of Aeronautics and Astronautics, 2012. 588Google Scholar
  226. 226.
    S Guo, Fukuda T, Asaka K. A new type of fish-like underwater microrobot. IEEE/ASME Trans Mechatron, 2003, 8: 136–141Google Scholar
  227. 227.
    Cho K J, Hawkes E, Quinn C, et al. Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008. 706–711Google Scholar
  228. 228.
    Wang Z, Hang G, Wang Y, et al. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Mater Struct, 2008, 17: 025039Google Scholar
  229. 229.
    Wang Z L, Wang Y W, Li J, et al. A micro biomimetic manta ray robot fish actuated by SMA. In: The Proceedings of the IEEE International Conference on Robotics and Biomimetics. Guilin: IEEE, 2009. 1809–1813Google Scholar
  230. 230.
    Yang Y C, Ye X F, Guo S X. A new type of jellyfish-like microrobot. In: The Proceedings of the IEEE International Conference on Integration Technology. Shenzhen: IEEE, 2007. 673–678Google Scholar
  231. 231.
    Guo S X, Shi L W, Ye X F, et al. A new jellyfish type of underwater microrobot. In: The Proceedings of the International Conference on Mechatronics and Automation. Harbin: IEEE, 2007. 509–514Google Scholar
  232. 232.
    Shi L W, Guo S X, Asaka K. A novel jellyfish-like biomimetic microrobot. In: The Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering. Gold Coast: IEEE, 2010. 277–281Google Scholar
  233. 233.
    Li T, Li J, Zhang H, et al. Magnetically propelled fish-like nanoswimmers. Small, 2016, 12: 6098–6105Google Scholar
  234. 234.
    Li J, Liu C, Xu Z, et al. A bio-inspired micropump based on stomatal transpiration in plants. Lab Chip, 2011, 11: 2785–2789Google Scholar
  235. 235.
    Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 1998, 279: 519–526Google Scholar
  236. 236.
    Shi L W, Guo S X, Asaka K. A novel multifunctional underwater microrobot. In: The Proceedings of the IEEE International Conference on Robotics and Biomimetics. Tianjin: IEEE, 2010. 873–878Google Scholar
  237. 237.
    Leong T G, Randall C L, Benson B R, et al. Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci USA, 2009, 106: 703–708Google Scholar
  238. 238.
    Malachowski K, Jamal M, Jin Q, et al. Self-folding single cell grippers. Nano Lett, 2014, 14: 4164–4170Google Scholar
  239. 239.
    Ricotti L, Menciassi A. Bio-hybrid muscle cell-based actuators. Biomed Microdevices, 2012, 14: 987–998Google Scholar
  240. 240.
    Park S J, Gazzola M, Park K S, et al. Phototactic guidance of a tissueengineered soft-robotic ray. Science, 2016, 353: 158–162Google Scholar
  241. 241.
    Uesugi K, Shimizu K, Akiyama Y, et al. Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robotics, 2016, 3: 13–22Google Scholar
  242. 242.
    Ricotti L, Trimmer B, Feinberg A W, et al. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci Robot, 2017, 2: eaaq0495Google Scholar
  243. 243.
    Patino T, Mestre R, Sánchez S. Miniaturized soft bio-hybrid robotics: A step forward into healthcare applications. Lab Chip, 2016, 16: 3626–3630Google Scholar
  244. 244.
    Tanaka Y, Noguchi Y, Yalikun Y, et al. Earthworm muscle driven bio-micropump. Senss Actuators B-Chem, 2017, 242: 1186–1192Google Scholar
  245. 245.
    Tanaka Y, Morishima K, Shimizu T, et al. An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip, 2006, 6: 362–368Google Scholar
  246. 246.
    Tanaka Y, Morishima K, Shimizu T, et al. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Lab Chip, 2006, 6: 230–235Google Scholar
  247. 247.
    Williams B J, Anand S V, Rajagopalan J, et al. A self-propelled biohybrid swimmer at low reynolds number. Nat Commun, 2014, 5: 3081Google Scholar
  248. 248.
    Cvetkovic C, Raman R, Chan V, et al. Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci USA, 2014, 111: 10125–10130Google Scholar
  249. 249.
    Raman R, Cvetkovic C, Uzel S G M, et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proc Natl Acad Sci USA, 2016, 113: 3497–3502Google Scholar
  250. 250.
    Magdanz V, Medina-Sánchez M, Schwarz L, et al. Spermatozoa as functional components of robotic microswimmers. Adv Mater, 2017, 29Google Scholar
  251. 251.
    Carlsen R W, Edwards M R, Zhuang J, et al. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip, 2014, 14: 3850–3859Google Scholar
  252. 252.
    Medina-Sánchez M, Schwarz L, Meyer A K, et al. Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Lett, 2015, 16: 555–561Google Scholar
  253. 253.
    Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev, 2015, 115: 8704–8735Google Scholar
  254. 254.
    Stanton M M, Trichet-Paredes C, Sánchez S. Applications of threedimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip, 2015, 15: 1634–1637Google Scholar
  255. 255.
    Horiguchi H, Imagawa K, Hoshino T, et al. Fabrication and evaluation of reconstructed cardiac tissue and its application to bioactuated microdevices. IEEE Transon NanoBiosci, 2009, 8: 349–355Google Scholar
  256. 256.
    Yang W G, Yu H B, Li G X, et al. High-throughput fabrication and modular assembly of 3D heterogeneous microscale tissues. Small, 2017, 13Google Scholar
  257. 257.
    Kim S, Qiu F, Kim S, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater, 2013, 25: 5863–5868Google Scholar
  258. 258.
    Pokki J, Ergeneman O, Sivaraman K M, et al. Electroplated porous polypyrrole nanostructures patterned by colloidal lithography for drug-delivery applications. Nanoscale, 2012, 4: 3083–3088Google Scholar
  259. 259.
    Hu C, Aeschlimann F, Chatzipirpiridis G, et al. Spatiotemporally controlled electrodeposition of magnetically driven micromachines based on the inverse opal architecture. Electrochem Commun, 2017, 81: 97–101Google Scholar
  260. 260.
    Bertsch A, Bernhard P, Renaud P. Microstereolithography: Concepts and applications. In: The Proceedings of the 8th International Conference on Emerging Technologies and Factory Automation. Antibes- Juan les Pins: IEEE, 2001. 289–298Google Scholar
  261. 261.
    Choi J W, MacDonald E, Wicker R. Multi-material microstereolithography. Int J Adv Manuf Technol, 2010, 49: 543–551Google Scholar
  262. 262.
    Lan P X, Lee J W, Seol Y J, et al. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci-Mater Med, 2009, 20: 271–279Google Scholar
  263. 263.
    Gao W, Feng X, Pei A, et al. Bioinspired helical microswimmers based on vascular plants. Nano Lett, 2013, 14: 305–310Google Scholar
  264. 264.
    Wang Y, Fei S, Byun Y M, et al. Dynamic interactions between fast microscale rotors. J Am Chem Soc, 2009, 131: 9926–9927Google Scholar
  265. 265.
    Gibbs J G, Zhao Y P. Design and characterization of rotational multicomponent catalytic nanomotors. Small, 2009, 5: 2304–2308Google Scholar
  266. 266.
    He Y, Wu J, Zhao Y. Designing catalytic nanomotors by dynamic shadowing growth. Nano Lett, 2007, 7: 1369–1375Google Scholar
  267. 267.
    Zeeshan M A, Grisch R, Pellicer E, et al. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small, 2014, 10: 1284–1288Google Scholar
  268. 268.
    Wang H, Sofer Z, Eng A Y S, et al. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading. Chem Eur J, 2014, 20: 14946–14950Google Scholar
  269. 269.
    Wu Z, Li T, Li J, et al. Turning erythrocytes into functional micromotors. ACS Nano, 2014, 8: 12041–12048Google Scholar
  270. 270.
    Soong R K, Bachand G D, Neves H P, et al. Powering an inorganic nanodevice with a biomolecular motor. Science, 2000, 290: 1555–1558Google Scholar
  271. 271.
    Golod S V, Prinz V Y, Mashanov V I, et al. Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils. Semicond Sci Technol, 2001, 16: 181–185Google Scholar
  272. 272.
    Schmidt O G, Eberl K. Thin solid films roll up into nanotubes. Nature, 2001, 410: 168Google Scholar
  273. 273.
    Bell D J, Dong L, Nelson B J, et al. Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Lett, 2006, 6: 725–729Google Scholar
  274. 274.
    Zhang L, Abbott J J, Dong L, et al. Artificial bacterial flagella: Fabrication and magnetic control. Appl Phys Lett, 2009, 94: 064107Google Scholar
  275. 275.
    Filipiak D J, Azam A, Leong T G, et al. Hierarchical self-assembly of complex polyhedral microcontainers. J Micromech Microeng, 2009, 19: 075012Google Scholar
  276. 276.
    Mirkovic T, Foo M L, Arsenault A C, et al. Hinged nanorods made using a chemical approach to flexible nanostructures. Nat Nanotech, 2007, 2: 565–569Google Scholar
  277. 277.
    Wu Z, Wu Y, He W, et al. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed, 2013, 52: 7000–7003Google Scholar
  278. 278.
    Wu Z, Lin X, Wu Y, et al. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano, 2014, 8: 6097–6105Google Scholar
  279. 279.
    Wu Z, Gao C, Frueh J, et al. Remote-controllable explosive polymer multilayer tubes for rapid cancer cell killing. Macromol Rapid Commun, 2015, 36: 1444–1449Google Scholar
  280. 280.
    Lin X, Wu Z, Wu Y, et al. Self-propelled micro-/nanomotors based on controlled assembled architectures. Adv Mater, 2016, 28: 1060–1072Google Scholar
  281. 281.
    Khalil I S M, Dijkslag H C, Abelmann L, et al. Magnetosperm: A microrobot that navigates using weak magnetic fields. Appl Phys Lett, 2014, 104: 223701Google Scholar
  282. 282.
    Rajagopalan J, Saif M T A. Fabrication of freestanding 1-D PDMS microstructures using capillary micromolding. J Microelectromech Syst, 2013, 22: 992–994Google Scholar
  283. 283.
    Chen K, Gu C, Yang Z, et al. “Z”-shaped rotational Au/Pt micronanorobot. Micromachines, 2017, 8: 183Google Scholar
  284. 284.
    Hong Y, Velegol D, Chaturvedi N, et al. Biomimetic behavior of synthetic particles: From microscopic randomness to macroscopic control. Phys Chem Chem Phys, 2010, 12: 1423–1435Google Scholar
  285. 285.
    Zhou D, Li Y C, Xu P, et al. Visible-light controlled catalytic Cu2O–Au micromotors. Nanoscale, 2017, 9: 75–78Google Scholar
  286. 286.
    Zhou D, Li Y C, Xu P, et al. Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale, 2017, 9: 11434–11438Google Scholar
  287. 287.
    Ahmed S, Wang W, Mair L O, et al. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir, 2013, 29: 16113–16118Google Scholar
  288. 288.
    Li T, Chang X, Wu Z, et al. Autonomous collision-free navigation of microvehicles in complex and dynamically changing environments. ACS Nano, 2017, 11: 9268–9275Google Scholar
  289. 289.
    Kim D H, Cheang U K, Kőhidai L, et al. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabrication of microbiorobots. Appl Phys Lett, 2010, 97: 173702Google Scholar
  290. 290.
    Pawashe C, Floyd S, Sitti M. Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robotics Res, 2009, 28: 1077–1094Google Scholar
  291. 291.
    Floyd S, Diller E, Pawashe C, et al. Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int J Robotics Res, 2011, 30: 1553–1565Google Scholar
  292. 292.
    Diller E, Floyd S, Pawashe C, et al. Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot, 2012, 28: 172–182Google Scholar
  293. 293.
    Solovev A A, Sanchez S, Pumera M, et al. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv Funct Mater, 2010, 20: 2430–2435Google Scholar
  294. 294.
    Baraban L, Harazim S M, Sanchez S, et al. Chemotactic behavior of catalytic motors in microfluidic channels. Angew Chem, 2013, 125: 5662–5666Google Scholar
  295. 295.
    Hong Y, Blackman N M K, Kopp N D, et al. Chemotaxis of nonbiological colloidal rods. Phys Rev Lett, 2007, 99: 178103Google Scholar
  296. 296.
    Laocharoensuk R, Burdick J, Wang J. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano, 2008, 2: 1069–1075Google Scholar
  297. 297.
    Wang W, Duan W, Zhang Z, et al. A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chem Commun, 2015, 51: 1020–1023Google Scholar
  298. 298.
    Li L, Wang J, Li T, et al. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: Model and experiment. Soft Matter, 2014, 10: 7511–7518Google Scholar
  299. 299.
    Pappas I, Codourey A. Visual control of a microrobot operating under a microscope. In: The Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka: IEEE, 1996. 993–1000Google Scholar
  300. 300.
    Kim K, Liu X, Zhang Y, et al. Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J Micromech Microeng, 2008, 18: 055013Google Scholar
  301. 301.
    Diller E, Giltinan J, Sitti M. Independent control of multiple magnetic microrobots in three dimensions. Int J Robotics Res, 2013, 32: 614–631Google Scholar
  302. 302.
    Yang G Z, Bellingham J, Dupont P E, et al. The grand challenges of science robotics. Sci Robot, 2018, 3: eaar7650Google Scholar
  303. 303.
    Zhang C, Wang W, Xi N, et al. Development and future challenges of bio-syncretic robots. Engineering, 2018, 4: 452–463Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Emerging Technologies Institute, Department of Industrial & Manufacturing Systems EngineeringUniversity of Hong KongPokfulamHong Kong

Personalised recommendations