Advertisement

Using big data to track marine oil transportation along the 21st-century Maritime Silk Road

  • Liang Cheng
  • Zhaojin Yan
  • Yijia Xiao
  • Yanming Chen
  • Fangli ZhangEmail author
  • Manchun LiEmail author
Article
  • 20 Downloads

Abstract

China’s designation of the “21st-century Maritime Silk Road” (MSR) region is of extraordinary significance to its maritime rights, transportation security, and socio-economic development. We developed a technical framework allowing the use of “big data” derived from the Automatic Identification System (AIS, an automatic ship-tracking network) for two purposes: the accurate mapping of oil tanker trajectories and the creation of heat maps showing the relative use of oil tanker routes and marine shipping chokepoints. We then applied these methods to 1.5 billion AIS records collected within the MSR in 2014 to statistically identify and analyze busy routes, areas, and chokepoints in this strategic region. Our results demonstrate that the proposed framework can provide an effective analysis of oil movements based on large-scale AIS datasets, helping researchers and policy makers better understand the footprint and strategic implications of maritime oil transportation in the MSR region.

Keywords

21st-century Maritime Silk Road (MSR) maritime oil transportation transportation chokepoints heat map automatic identification system (AIS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jia H. Scientific collaborations shine on Belt and Road. Natl Sci Rev, 2017, 4: 652–657CrossRefGoogle Scholar
  2. 2.
    Zhang Z X. China’s energy security, the Malacca dilemma and responses. Energy Policy, 2011, 39: 7612–7615CrossRefGoogle Scholar
  3. 3.
    Song C, Li C. Relationship between chinese and international crude oil prices: A vec-tarch approach. Math Problems Eng, 2015, 2015: 1–10Google Scholar
  4. 4.
    Brussaard C P D, Peperzak L, Beggah S, et al. Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nat Commun, 2016, 7: 11206CrossRefGoogle Scholar
  5. 5.
    Feng J, Chen H, Bi F K, et al. Detection of oil spills in a complex scene of SAR imagery. Sci China Technol Sci, 2014, 57: 2204–2209CrossRefGoogle Scholar
  6. 6.
    Guo J, Liu X, Xie Q. Characteristics of the Bohai Sea oil spill and its impact on the Bohai Sea ecosystem. Chin Sci Bull, 2013, 58: 2276–2281CrossRefGoogle Scholar
  7. 7.
    Cheng L, Duran M A. Logistics for world-wide crude oil transportation using discrete event simulation and optimal control. Comput Chem Eng, 2004, 28: 897–911CrossRefGoogle Scholar
  8. 8.
    Walls W D. Petroleum refining industry in China. Energy Policy, 2010, 38: 2110–2115CrossRefGoogle Scholar
  9. 9.
    Chu C, Chu F, Zhou M C, et al. A polynomial dynamic programming algorithm for crude oil transportation planning. IEEE Trans Automat Sci Eng, 2012, 9: 42–55CrossRefGoogle Scholar
  10. 10.
    Cervera M A, Ginesi A, Eckstein K. Satellite-based vessel Automatic Identification System: A feasibility and performance analysis. Int J Satell Commun Network, 2011, 29: 117–142CrossRefGoogle Scholar
  11. 11.
    McCauley D J, Woods P, Sullivan B, et al. Ending hide and seek at sea. Science, 2016, 351: 1148–1150CrossRefGoogle Scholar
  12. 12.
    Doulkeridis C, George A. V, Qu Q, et al. Mobility Analytics for Spatio-Temporal and Social Data: First International Workshop. Munich: Springer Press, 2017. 28–31Google Scholar
  13. 13.
    Kroodsma D A, Mayorga J, Hochberg T, et al. Tracking the global footprint of fisheries. Science, 2018, 359: 904–908CrossRefGoogle Scholar
  14. 14.
    Lazer D, Kennedy R, King G, et al. The parable of Google Flu: Traps in big data analysis. Science, 2014, 343: 1203–1205CrossRefGoogle Scholar
  15. 15.
    Etienne L, Devogele T, Buchin M, et al. Trajectory Box Plot: A new pattern to summarize movements. Int J Geographical Inf Sci, 2016, 30: 835–853CrossRefGoogle Scholar
  16. 16.
    Demšar U, Virrantaus K. Space-time density of trajectories: Exploring spatio-temporal patterns in movement data. Int J Geographical Inf Sci, 2010, 24: 1527–1542CrossRefGoogle Scholar
  17. 17.
    de Souza E N, Boerder K, Matwin S, et al. Improving fishing pattern detection from satellite ais using data mining and machine learning. PLoS ONE, 2016, 11: e0158248CrossRefGoogle Scholar
  18. 18.
    Pallotta G, Vespe M, Bryan K. Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction. Entropy, 2013, 15: 2218–2245CrossRefzbMATHGoogle Scholar
  19. 19.
    Mascaro S, Nicholso A E, Korb K B. Anomaly detection in vessel tracks using Bayesian networks. Int J Approximate Reasoning, 2014, 55: 84–98CrossRefGoogle Scholar
  20. 20.
    Lei P R. A framework for anomaly detection in maritime trajectory behavior. Knowl Inf Syst, 2016, 47: 189–214CrossRefGoogle Scholar
  21. 21.
    Silveira P A M, Teixeira A P, Soares C G. Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal. J Navigation, 2013, 66: 879–898CrossRefGoogle Scholar
  22. 22.
    Zhang W, Goerlandt F, Montewka J, et al. A method for detecting possible near miss ship collisions from AIS data. Ocean Eng, 2015, 107: 60–69CrossRefGoogle Scholar
  23. 23.
    Zhang W, Goerlandt F, Kujala P, et al. An advanced method for detecting possible near miss ship collisions from AIS data. Ocean Eng, 2016, 124: 141–156CrossRefGoogle Scholar
  24. 24.
    Kaluza P, Kölzsch A, Gastner M T, et al. The complex network of global cargo ship movements. J R Soc Interface, 2010, 7: 1093–1103CrossRefGoogle Scholar
  25. 25.
    Vettor R, Guedes Soares C. Detection and analysis of the main routes of voluntary observing ships in the North Atlantic. J Navigation, 2015, 68: 397–410CrossRefGoogle Scholar
  26. 26.
    Wen Y T, Lai C H, Lei P R, et al. Routeminer: Mining ship routes from a massive maritime trajectories. In: Proceedings of the 2014 IEEE 15th International Conference on Mobile Data Management (MDM). Pittsburgh: IEEE, 2014. 353–356CrossRefGoogle Scholar
  27. 27.
    Lei P R, Tsai T H, Peng W C. Discovering maritime traffic route from AIS network. In: Proceedings of the 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS). Kanazawa: IEEE, 2016. 1–6Google Scholar
  28. 28.
    Zhen R, Jin Y, Hu Q, et al. Maritime anomaly detection within coastal waters based on vessel trajectory clustering and naïve bayes classifier. J Navigation, 2017, 70: 648–670CrossRefGoogle Scholar
  29. 29.
    Lee J G, Han J, Whang K Y. Trajectory clustering: a partition-andgroup framework. In: Proceedings of the 2007 ACM SIGMOD international conference on Management of data. Beijing: ACM, 2007. 593–604CrossRefGoogle Scholar
  30. 30.
    Liu B, de Souza E N, Matwin S, et al. Knowledge-based clustering of ship trajectories using density-based approach. In: Proceedings of the 2014 IEEE International Conference on Big Data (Big Data). Washington DC: IEEE, 2014. 603–608CrossRefGoogle Scholar
  31. 31.
    Yan W, Wen R, Zhang A N, et al. Vessel movement analysis and pattern discovery using density-based clustering approach. In: Proceedings of the 2016 IEEE International Conference on Big Data (Big Data). Washington DC: IEEE, 2016. 3798–3806CrossRefGoogle Scholar
  32. 32.
    Pallotta G, Vespe M, Bryan K. Traffic knowledge discovery from ais data. In: Proceedings of the 2013 16th International Conference on Information Fusion (FUSION). Istanbul: IEEE, 2013. 1996–2003Google Scholar
  33. 33.
    Chen J, Lu F, Peng G. A quantitative approach for delineating principal fairways of ship passages through a strait. Ocean Eng, 2015, 103: 188–197CrossRefGoogle Scholar
  34. 34.
    Qu X, Meng Q, Suyi L. Ship collision risk assessment for the Singapore Strait. Accident Anal Prevention, 2011, 43: 2030–2036CrossRefGoogle Scholar
  35. 35.
    Boerder K, Miller N A, Worm B. Global hot spots of transshipment of fish catch at sea. Sci Adv, 2018, 4: eaat7159CrossRefGoogle Scholar
  36. 36.
    Cózar A, Martí E, Duarte C M, et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci Adv, 2017, 3: e1600582CrossRefGoogle Scholar
  37. 37.
    Wu X D, Zhu X Q, Wu G Q, et al. Data mining with big data. IEEE Trans Knowl Data Eng, 2014, 26: 97–107CrossRefGoogle Scholar
  38. 38.
    Yin Y F, Gong G H, Han L. Theory and techniques of data mining in CGF behavior modeling. Sci China Inf Sci, 2011, 54: 717–731CrossRefGoogle Scholar
  39. 39.
    Zhu J, Chen J, Hu W, et al. Big learning with bayesian methods. Natl Sci Rev, 2017, 4: 627–651CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Provincial Key Laboratory of Geographic Information Science and TechnologyNanjing UniversityNanjingChina
  2. 2.Collaborative Innovation Center for the South Sea StudiesNanjing UniversityNanjingChina
  3. 3.Collaborative Innovation Center of Novel Software Technology and IndustrializationNanjing UniversityNanjingChina
  4. 4.School of Geography and Ocean ScienceNanjing UniversityNanjingChina
  5. 5.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and ApplicationNanjingChina

Personalised recommendations