Science China Technological Sciences

, Volume 61, Issue 12, pp 1882–1888 | Cite as

Experimental study and numerical modeling of the damage evolution of thermal barrier coating systems under tension

  • ShaoLin Li
  • HongWei Yang
  • HongYu QiEmail author
  • JiaNan Song
  • XiaoGuang Yang
  • DuoQi Shi


This study investigated the damage evolution (i.e., formation of vertical cracks, transformation of vertical cracks to interfacial crack and delamination) of thermal barrier coating systems under tension by using experimental and numerical methods. Experimental results revealed that the first transverse crack that was perpendicular to the load direction occurred when the strain of the top coat reached 0.5%. The full-scale strain of the top coat layer obtained by using the Digital Image Correlation technique indicated that surface cracks formed due to the coalescence of micro-cracks. Moreover, the results of the finite element method demonstrated that the vertical cracks initiated from the coating surface and extended through the thickness of the coatings. The density of the surface cracks was used as a damage evolution indicator such that numerical simulation could predict the cracking behaviour under tension loading. The results were consistent with those of the experimental study.


damage evolution interfacial thermal barrier coating systems digital image correlation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang X, Guo S, Zhao L, et al. A novel thermal barrier coating for high-temperature applications. Ceramics Int, 2016, 42: 2648–2653CrossRefGoogle Scholar
  2. 2.
    Clarke D R, Phillpot S R. Thermal barrier coating materials. Mater Today, 2005, 8: 22–29CrossRefGoogle Scholar
  3. 3.
    Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gasturbine engine applications. Science, 2002, 296: 280–284CrossRefGoogle Scholar
  4. 4.
    Wright P. Mechanisms governing the performance of thermal barrier coatings. Curr Opin Solid State Mater Sci, 1999, 4: 255–265CrossRefGoogle Scholar
  5. 5.
    Wu C W, Huang C G, Chen G N. Interface delamination of the thermal barrier coating subjected to local heating. Sci China Tech Sci, 2010, 53: 3168–3174CrossRefzbMATHGoogle Scholar
  6. 6.
    Li S L, Yang X G, Qi H Y, et al. The effect of thermal loading waveform on the failure mechanism of atmospheric-plasma-sprayed thermal barrier coating system. Sci China Tech Sci, 2018, doi: 10.1007/s11431-017-9173-7Google Scholar
  7. 7.
    Zhu J G, Chen W, Xie H M. Simulation of residual stresses and their effects on thermal barrier coating systems using finite element method. Scie China Phys Mech Astron, 2015, 58: 034602Google Scholar
  8. 8.
    Teixeira V, Andritschky M, Fischer W, et al. Analysis of residual stresses in thermal barrier coatings. J Mater Proce Tech, 1999, 92-93: 209–216CrossRefGoogle Scholar
  9. 9.
    Tang M, Xie H, Zhu J, et al. The failure mechanisms of TBC structure by moiré interferometry. Mater Sci Eng-A, 2013, 565: 142–147CrossRefGoogle Scholar
  10. 10.
    Ali M Y, Nusier S Q, Newaz G M. Mechanics of damage initiation and growth in a TBC/superalloy system. Int J Solid Struct, 2001, 38: 3329–3340CrossRefzbMATHGoogle Scholar
  11. 11.
    Busso E P, Qian Z Q. A mechanistic study of microcracking in transversely isotropic ceramic–metal systems. Acta Mater, 2006, 54: 325–338CrossRefGoogle Scholar
  12. 12.
    Wang L, Li D C, Yang J S, et al. Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: A review. J Eur Ceram Soc, 2016, 36: 1313–1331CrossRefGoogle Scholar
  13. 13.
    Kumar V, Balasubramanian K. Progress update on failure mechanisms of advanced thermal barrier coatings: A review. Prog Org Coat, 2016, 90: 54–82CrossRefGoogle Scholar
  14. 14.
    Hongyu Q, Xiaoguang Y, Yamei W. Interfacial fracture toughness of APS bond coat/substrate under high temperature. Int J Fract, 2009, 157: 71–80CrossRefzbMATHGoogle Scholar
  15. 15.
    Chen Z B, Wang Z G, Zhu S J. Tensile fracture behavior of thermal barrier coatings on superalloy. Surf Coat Tech, 2011, 205: 3931–3938CrossRefGoogle Scholar
  16. 16.
    Zhou Y C, Tonomori T, Yoshida A, et al. Fracture characteristics of thermal barrier coatings after tensile and bending tests. Surf Coat Tech, 2002, 157: 118–127CrossRefGoogle Scholar
  17. 17.
    Wang X, Tint S, Chiu M, et al. Stiffness of free-standing thermal barrier coating top coats measured by bending tests. Acta Mater, 2012, 60: 3247–3258CrossRefGoogle Scholar
  18. 18.
    Zhao P F, Sun C A, Zhu X Y, et al. Fracture toughness measurements of plasma-sprayed thermal barrier coatings using a modified fourpoint bending method. Surf Coat Tech, 2010, 204: 4066–4074CrossRefGoogle Scholar
  19. 19.
    Wang L, Ni J X, Shao F, et al. Failure behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings under three-point bending test via acoustic emission technique. J Therm Spray Tech, 2017, 26: 116–131CrossRefGoogle Scholar
  20. 20.
    Yang L, Zhou Y C, Lu C. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: An acoustic emission method. Acta Mater, 2011, 59: 6519–6529CrossRefGoogle Scholar
  21. 21.
    Eberl C, Gianola D S, Wang X, et al. A method for in situ measurement of the elastic behavior of a columnar thermal barrier coating. Acta Mater, 2011, 59: 3612–3620CrossRefGoogle Scholar
  22. 22.
    Schlichting K W, Vaidyanathan K, Sohn Y H, et al. Application of Cr3 + photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement. Mater Sci Eng-A, 2000, 291: 68–77CrossRefGoogle Scholar
  23. 23.
    Sun Y, Liu M. Analysis of the crack penetration/deflection at the interfaces in the intelligent coating system utilizing virtual crack closure technique. Eng Fract Mech, 2015, 133: 152–162CrossRefGoogle Scholar
  24. 24.
    Bhatnagar H, Ghosh S, Walter M E. Parametric studies of failure mechanisms in elastic EB-PVD thermal barrier coatings using FEM. Int J Solid Struct, 2006, 43: 4384–4406CrossRefzbMATHGoogle Scholar
  25. 25.
    Seiler P, Bäker M, Rösler J. Multi-scale failure mechanisms of thermal barrier coating systems. Comput Mater Sci, 2013, 80: 27–34CrossRefGoogle Scholar
  26. 26.
    Zhu W, Yang L, Guo J W, et al. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. Int J Plast, 2015, 64: 76–87CrossRefGoogle Scholar
  27. 27.
    Dugdale D S. Yielding of steel sheets containing slits. J Mech Phys Solids, 1960, 8: 100–104CrossRefGoogle Scholar
  28. 28.
    Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech, 1987, 54: 525–531CrossRefzbMATHGoogle Scholar
  29. 29.
    Fan X L, Xu R, Zhang W X, et al. Effect of periodic surface cracks on the interfacial fracture of thermal barrier coating system. Appl Surf Sci, 2012, 258: 9816–9823CrossRefGoogle Scholar
  30. 30.
    Parmigiani J P, Thouless M D. The roles of toughness and cohesive strength on crack deflection at interfaces. J Mech Phys Solids, 2006, 54: 266–287CrossRefzbMATHGoogle Scholar
  31. 31.
    Di Leo C V, Luk-Cyr J, Liu H, et al. A new methodology for characterizing traction-separation relations for interfacial delamination of thermal barrier coatings. Acta Mater, 2014, 71: 306–318CrossRefGoogle Scholar
  32. 32.
    Zhu W, Yang L, Guo J W, et al. Numerical study on interaction of surface cracking and interfacial delamination in thermal barrier coatings under tension. Appl Surf Sci, 2014, 315: 292–298CrossRefGoogle Scholar
  33. 33.
    Bialas M. Finite element analysis of stress distribution in thermal barrier coatings. Surf Coat Tech, 2008, 202: 6002–6010CrossRefGoogle Scholar
  34. 34.
    Ramberg W, Osgood W R. Description of stress-strain curves by three parameters. Technical Note no. 503. Washington, DC: National Advisory Committee for Aeronautics, 1943Google Scholar
  35. 35.
    Aktaa J, Sfar K, Munz D. Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Mater, 2005, 53: 4399–4413CrossRefGoogle Scholar
  36. 36.
    Evans A G, He M Y, Hutchinson J W. Mechanics-based scaling laws for the durability of thermal barrier coatings. Prog Mater Sci, 2001, 46: 249–271CrossRefGoogle Scholar
  37. 37.
    Xu W, Wei Y. Strength analysis of metallic bonded joints containing defects. Comput Mater Sci, 2012, 53: 444–450CrossRefGoogle Scholar
  38. 38.
    Bialas M, Majerus P, Herzog R, et al. Numerical simulation of segmentation cracking in thermal barrier coatings by means of cohesive zone elements. Mater Sci Eng-A, 2005, 412: 241–251CrossRefGoogle Scholar
  39. 39.
    Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater, 2000, 48: 3963–3976CrossRefGoogle Scholar
  40. 40.
    Xu Z H, Yang Y, Huang P, et al. Determination of interfacial properties of thermal barrier coatings by shear test and inverse finite element method. Acta Mater, 2010, 58: 5972–5979CrossRefGoogle Scholar
  41. 41.
    Deng H X, Shi H J, Yu H C, et al. Effect of heat treatment at 900°C on microstructural and mechanical properties of thermal barrier coatings. Surf Coat Tech, 2011, 205: 3621–3630CrossRefGoogle Scholar
  42. 42.
    Qian L, Zhu S, Kagawa Y, et al. Tensile damage evolution behavior in plasma-sprayed thermal barrier coating system. Surf Coat Tech, 2003, 173: 178–184CrossRefGoogle Scholar
  43. 43.
    Wang L, Wang Y, Sun X G, et al. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater Des, 2011, 32: 36–47CrossRefGoogle Scholar
  44. 44.
    Rahmani K, Nategh S. Influence of aluminide diffusion coating on low cycle fatigue properties of René 80. Mater Sci Eng-A, 2008, 486: 686–695CrossRefGoogle Scholar
  45. 45.
    Jiang P, Fan X, Sun Y, et al. Competition mechanism of interfacial cracks in thermal barrier coating system. Mater Des, 2017, 132: 559–566CrossRefGoogle Scholar
  46. 46.
    Zhou M, Yao W B, Yang X S, et al. In-situ and real-time tests on the damage evolution and fracture of thermal barrier coatings under tension: A coupled acoustic emission and digital image correlation method. Surf Coat Tech, 2014, 240: 40–47CrossRefGoogle Scholar
  47. 47.
    McGuigan A P, Briggs G A D, Burlakov V M, et al. An elastic-plastic shear lag model for fracture of layered coatings. Thin Solid Films, 2003, 424: 219–223CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • ShaoLin Li
    • 1
    • 2
  • HongWei Yang
    • 1
  • HongYu Qi
    • 1
    • 2
    Email author
  • JiaNan Song
    • 1
  • XiaoGuang Yang
    • 1
    • 2
  • DuoQi Shi
    • 1
    • 2
  1. 1.School of Energy and Power EngineeringBeihang UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Aero-Engine Structure and StrengthBeijingChina

Personalised recommendations