Advertisement

Science China Technological Sciences

, Volume 61, Issue 12, pp 1845–1865 | Cite as

Imaging energetic electron spectrometer onboard a Chinese navigation satellite in the inclined GEO orbit

  • Hong Zou
  • YuGuang Ye
  • QiuGang Zong
  • HongFei Chen
  • JiQing Zou
  • Jiang Chen
  • WeiHong Shi
  • XiangQian Yu
  • WeiYing Zhong
  • YongFu Wang
  • XuZhi Zhou
  • YiXin Hao
  • XingRan Chen
  • XiangHong Jia
  • Feng Xu
  • SiPei Shao
  • Bo Wang
  • XiaoYun Hao
  • XiaoXin Zhang
Article
  • 35 Downloads

Abstract

The energetic electron measurement is one of the most important issues to understand dynamics in space physics and the applications for space weather. In this study, the principle and functional components of the imaging energetic electron spectrometer (IES) onboard a Chinese navigation satellite in the inclined GEO orbit (IGSO) was introduced. The IES instrument is developed by the team in Peking University (BeiDa), thus it is named as BD-IES. Based on the pin-hole technique, the instrument can measure 50–600 keV electrons incident from 9 directions over a range of 180° in polar angle. With pulse height analysis (PHA), the spectrum can be determined for each direction. The energy and angular calibrations were performed, which show the good energy and angular characteristics of BD-IES. Monte Carlo simulations show that the anti-proton design of BDIES can effectively decrease the proton contamination on the electron measurements in the inclined GEO orbit. The primary results of BD-IES verify the successful design of this instrument.

Keywords

imaging energetic electron spectrometer pin-hole imaging system IGSO satellite 

References

  1. 1.
    Baker D N, Stone E C. Energetic electron anisotropies in the magnetotail: Identification of open and closed field lines. Geophys Res Lett, 1976, 3: 557–560CrossRefGoogle Scholar
  2. 2.
    Baker D N, Stone E C. The magnetopause electron layer along the distant magnetotail. Geophys Res Lett, 1977, 4: 133–136CrossRefGoogle Scholar
  3. 3.
    Baker D N, Stone E C. The relationship of energy flow at the magnetopause to geomagnetic activity. Geophys Res Lett, 1977, 4: 395–398CrossRefGoogle Scholar
  4. 4.
    Baker D N, Stone E C. The magnetopause energetic electron layer, 1. Observations along the distant magnetotail. J Geophys Res, 1978, 83: 4327–4338CrossRefGoogle Scholar
  5. 5.
    Scholer M, Gloeckler G, Hovestadt D, et al. Simultaneous observation of the plasma sheet in the near Earth and distant magnetotail: ISEE-1 and ISEE-3. Geophys Res Lett, 1984, 11: 1034–1037CrossRefGoogle Scholar
  6. 6.
    Scholer M, Baker D N, Bame S J, et al. Correlated observations of substorm effects in the near-Earth region and the deep magnetotail. J Geophys Res, 1985, 90: 4021–4026CrossRefGoogle Scholar
  7. 7.
    Wilken B, Zong Q G, Daglis I A, et al. Tailward flowing energetic oxygen ion bursts associated with multiple flux ropes in the distant magnetotail: Geotail observations. Geophys Res Lett, 1995, 22: 3267–3270CrossRefGoogle Scholar
  8. 8.
    Roberts C S. Pitch-angle diffusion of electrons in the magnetosphere. Rev Geophys, 1969, 7: 305–337CrossRefGoogle Scholar
  9. 9.
    West Jr H I, Buck R M, Walton J R. Electron pitch angle distributions throughout the magnetosphere as observed on Ogo 5. J Geophys Res, 1973, 78: 1064–1081CrossRefGoogle Scholar
  10. 10.
    Morioka A, Misawa H, Miyoshi Y, et al. Pitch angle distribution of relativistic electrons in the inner radiation belt and its relation to equatorial plasma wave turbulence phenomena. Geophys Res Lett, 2001, 28: 931–934CrossRefGoogle Scholar
  11. 11.
    Horne R B, Meredith N P, Thorne R M, et al. Evolution of energetic electron pitch angle distributions during storm time electron acceleration to megaelectronvolt energies. J Geophys Res, 2003, 108: 1016CrossRefGoogle Scholar
  12. 12.
    Summers D, Thorne R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res, 2003, 108: 1143–1154CrossRefGoogle Scholar
  13. 13.
    Baker D N, Elkington S R, Li X, et al. Particle Acceleration in the Inner Magnetosphere: Physics and Modelling. Washington D C: AGU, 2005. 73–85CrossRefGoogle Scholar
  14. 14.
    Gannon J L, Li X, Heynderickx D. Pitch angle distribution analysis of radiation belt electrons based on Combined Release and Radiation Effects Satellite Medium Electrons A data. J Geophys Res, 2007, 112: A05212–A05222CrossRefGoogle Scholar
  15. 15.
    Li L, Cao J, Zhou G. Combined acceleration of electrons by whistlermode and compressional ULF turbulences near the geosynchronous orbit. J Geophys Res, 2005, 110: A03203CrossRefGoogle Scholar
  16. 16.
    Li L Y, Cao J B, Zhou G C, et al. Statistical roles of storms and substorms in changing the entire outer zone relativistic electron population. J Geophys Res, 2009, 114: A12214Google Scholar
  17. 17.
    Li L Y, Yu J, Cao J B, et al. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences. J Geophys Res Space Phys, 2016, 121: 11,007–11,020CrossRefGoogle Scholar
  18. 18.
    Li L Y, Liu B, Yu J, et al. The rapid responses of magnetosonic waves to the compression and expansion of earth’s magnetosphere. Geophys Res Lett, 2017, 44: 11,239–11,247CrossRefGoogle Scholar
  19. 19.
    Li L Y, Wang Z Q. The effects of solar wind dynamic pressure changes on the substorm auroras and energetic electron injections on 24 August 2005. J Geophys Res Space Phys, 2018, 123: 385–399CrossRefGoogle Scholar
  20. 20.
    Yu J, Li L Y, Cao J B, et al. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement. J Geophys Res Space Phys, 2015, 120: 10275–10288CrossRefGoogle Scholar
  21. 21.
    Yu J, Li L Y, Cao J B, et al. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons. Geophys Res Lett, 2016, 43: 7319–7327CrossRefGoogle Scholar
  22. 22.
    Evans, D S, Greer M S. Polar orbiting environmental satellite space experiment monitor-2: Instrument descriptions and archive data documentation. Tech Memo version 1.3. Boulder, Colo: Natl Oceanic and Atmos Admin Space Environ Cent, 2004Google Scholar
  23. 23.
    Tuszewski M, Cayton T E, Ingraham J C, et al. Bremsstrahlung effects in energetic particle detectors. Space Weather, 2004, 2: S10S01CrossRefGoogle Scholar
  24. 24.
    Blake J B, Carranza P A, Claudepierre S G, et al. The magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. Space Sci Rev, 2013, 179: 383–421CrossRefGoogle Scholar
  25. 25.
    Blake J B, Fennell J F, Friesen L M, et al. CEPPAD comprehensive energetic particle and pitch angle distribution experiment on POLAR. Space Sci Rev, 1995, 71: 531–562CrossRefGoogle Scholar
  26. 26.
    Wilken B, Axford W I, Daglis I, et al. RAPID: The imaging energetic particle spectrometer on cluster. Space Sci Rev, 1997, 79: 399–473CrossRefGoogle Scholar
  27. 27.
    Tumer T O, Cajipe V B, Clajus M, et al. Multi-channel front-end readout IC for position sensitive solid-state detectors. In: IEEE Nuclear Science Symposium Conference Record. San Diego: IEEE, 2006. 384–388Google Scholar
  28. 28.
    Tumer T O, Cajipe V B, Clajus M. Performance of RENA-3 IC with position-sensitive solid-state detectors. In: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X. Vol. 7079. International Society for Optics and Photonics. San Diego, 2008Google Scholar
  29. 29.
    Zou H, Luo L, Li C F, et al. Angular response of ‘pin-hole’ imaging structure measured by collimated β source. Sci China Tech Sci, 2013, 56: 2675–2680CrossRefGoogle Scholar
  30. 30.
    Zou H, Ye Y, Zong Q, et al. Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer onboard a Chinese IGSO navigation satellite. Sci China Tech Sci, 2018, doi: 10.1007/s11431-017-9314-6Google Scholar
  31. 31.
    Luo L, Zou H, Zong Q G, et al. Anti-proton contamination design of the imaging energetic electron spectrometer based on Geant4 simulation. Sci China Tech Sci, 2015, 58: 1385–1391CrossRefGoogle Scholar
  32. 32.
    Brice N. Fundamentals of very low frequency emission generation mechanisms. J Geophys Res, 1964, 69: 4515–4522CrossRefGoogle Scholar
  33. 33.
    Kennel C. Low-frequency whistler mode. Phys Fluids, 1966, 9: 2190–2202CrossRefGoogle Scholar
  34. 34.
    Lyons L R, Thorne R M, Kennel C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res, 1972, 77: 3455–3474CrossRefGoogle Scholar
  35. 35.
    Abel B, Thorne R M. Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes. J Geophys Res, 1998, 103: 2385–2396Google Scholar
  36. 36.
    Abel B, Thorne R M. Electron scattering loss in Earth’s inner magnetosphere: 2. Sensitivity to model parameters. J Geophys Res, 1998, 103: 2397–2407CrossRefGoogle Scholar
  37. 37.
    Meredith N P, Horne R B, Thorne R M, et al. Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys Res Lett, 2003, 30: 1871Google Scholar
  38. 38.
    Horne R B, Thorne R M, Glauert S A, et al. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res, 2005, 110: A03225CrossRefGoogle Scholar
  39. 39.
    Zong Q G, Zhou X Z, Li X, et al. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12105CrossRefGoogle Scholar
  40. 40.
    Zong Q G, Zhou X Z, Wang Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204Google Scholar
  41. 41.
    Yang B, Zong Q G, Wang Y F, et al. Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere. J Geophys Res, 2010, 115: A02214Google Scholar
  42. 42.
    Blake J B, Kolasinski W A, Fillius R W, et al. Injection of electrons and protons with energies of tens of MeV into L 3 on 24 March 1991. Geophys Res Lett, 1993, 19: 821–824CrossRefGoogle Scholar
  43. 43.
    Claudepierre S G, Elkington S R, Wiltberger M. Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause. J Geophys Res, 2008, 113: A05218–A05218CrossRefGoogle Scholar
  44. 44.
    Zong Q G, Wang Y F, Yang B, et al. Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere. Sci China Ser E-Tech Sci, 2008, 51: 1620–1625CrossRefGoogle Scholar
  45. 45.
    Southwood D J, Kivelson M G. Charged particle behavior in lowfrequency geomagnetic pulsations 1. Transverse waves. J Geophys Res, 1981, 86: 5643–5655CrossRefGoogle Scholar
  46. 46.
    Hudson M K, Kress B T, Mueller H R, et al. Relationship of the Van Allen radiation belts to solar wind drivers. J Atmos Sol-Terrestrial Phys, 2008, 70: 708–729CrossRefGoogle Scholar
  47. 47.
    Zhang J, Chen H, Li Z, et al. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J Geophys Res, 2010, 115: A10221CrossRefGoogle Scholar
  48. 48.
    Fairfield D H, Otto A, Mukai T, et al. Geotail observations of the Kelvin-Helmholtz instability at the Equatorial magnetotail boundary for parallel northward fields. J Geophys Res, 2000, 105: 21159–21173CrossRefGoogle Scholar
  49. 49.
    Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature, 2004, 430: 755–758CrossRefGoogle Scholar
  50. 50.
    Rae I J, Donovan E F, Mann I R, et al. Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J Geophys Res, 2005, 110: A12211CrossRefGoogle Scholar
  51. 51.
    Arnoldy R L, Chan K W. Particle substorms observed at the geostationary orbit. J Geophys Res, 1969, 74: 5019–5028CrossRefGoogle Scholar
  52. 52.
    McIlwain C E. Substorm injection boundaries. In: McCormac B M, Ed. Magnetospheric Physics. Netherlands: Springer, 1974. 143–154CrossRefGoogle Scholar
  53. 53.
    Baker D N, Fritz T A, Wilken B, et al. Observation and modeling of energetic particles at synchronous orbit on July 29, 1977. J Geophys Res, 1982, 87: 5917–5932CrossRefGoogle Scholar
  54. 54.
    Friedel R H W, Korth A, Kremser G. Substorm onsets observed by CRRES: Determination of energetic particle source regions. J Geophys Res, 1996, 101: 13137–13154CrossRefGoogle Scholar
  55. 55.
    Reeves G D, Henderson M G, Mclachlan P S, et al. Radial propagation of substorm injections. In: Rolfe E J, Kaldeich B, Eds. Proceeding of the third Conferenc on Substorms. Paris: European Space Agency Publications, 1996. 579–584Google Scholar
  56. 56.
    Birn J, Thomsen M F, Borovsky J E, et al. Substorm ion injections: Geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields. J Geophys Res, 1997, 102: 2325–2341CrossRefGoogle Scholar
  57. 57.
    Birn J, Thomsen M F, Borovsky J E, et al. Substorm electron injections: Geosynchronous observations and test particle simulations. J Geophys Res, 1998, 103: 9235–9248CrossRefGoogle Scholar
  58. 58.
    Nagai T, Yukimatu A S, Matsuoka A, et al. Timescales of relativistic electron enhancements in the slot region. J Geophys Res, 2006, 111: A11205CrossRefGoogle Scholar
  59. 59.
    Dai L, Wang C, Duan S, et al. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen probes observations. Geophys Res Lett, 2015, 42: 6170–6179CrossRefGoogle Scholar
  60. 60.
    Lanzerotti L J, Roberts C S, Brown W L. Temporal variations in the electron flux at synchronous altitudes. J Geophys Res, 1967, 72: 5893–5902CrossRefGoogle Scholar
  61. 61.
    Pfitzer K A, Winckler J R. Intensity correlations and substorm electron drift effects in the outer radiation belt measured with the ogo 3 and ats 1 satellites. J Geophys Res, 1969, 74: 5005–5018CrossRefGoogle Scholar
  62. 62.
    Reeves G D, Fritz T A, Cayton T E, et al. Multi-satellite measurements of the substorm injection region. Geophys Res Lett, 1990, 17: 2015–2018CrossRefGoogle Scholar
  63. 63.
    Reeves G D, Kettmann G, Fritz T A, et al. Further investigation of the CDAW 7 substorm using geosynchronous particle data: Multiple injections and their implications. J Geophys Res, 1992, 97: 6417–6428CrossRefGoogle Scholar
  64. 64.
    Turner D L, Claudepierre S G, Fennell J F, et al. Energetic electron injections deep into the inner magnetosphere associated with substorm activity. Geophys Res Lett, 2015, 42: 2079–2087CrossRefGoogle Scholar
  65. 65.
    Vette J I. The AE-8 trapped electron model environment. NASA Sti/recon Technical Report, No NASA-TM-107820, 1991Google Scholar
  66. 66.
    Li L, Zhou X Z, Zong Q G, et al. Ultralow frequency wave characteristics extracted from particle data: Application of IGSO observations. Sci China Tech Sci, 2017, 60: 419–424CrossRefGoogle Scholar
  67. 67.
    Li L, Zhou X Z, Zong Q G, et al. Charged particle behavior in localized ultralow frequency waves: Theory and observations. Geophys Res Lett, 2017, 44: 5900–5908CrossRefGoogle Scholar
  68. 68.
    Zong Q G, Hao Y X, Zou H, et al. Radial propagation of magnetospheric substorm-injected energetic electrons observed using a BDIES instrument and Van Allen Probes. Sci China Earth Sci, 2016, 59: 1508–1516CrossRefGoogle Scholar
  69. 69.
    Sheldon R B, Spence H E, Sullivan J D, et al. The discovery of trapped energetic electrons in the outer cusp. Geophys Res Lett, 1998, 25: 1825–1828CrossRefGoogle Scholar
  70. 70.
    Walsh B M, Fritz T A. Cluster energetic electron survey of the highaltitude cusp and adjacent regions. J Geophys Res, 2011, 116: A12212CrossRefGoogle Scholar
  71. 71.
    Wang L H, Zong Q G, Shi Q Q, et al. Discrete energetic (~50–200 keV) electron events in the high-altitude cusp/polar cap/lobe. Sci China Tech Sci, 2017, 60: 1935–1940CrossRefGoogle Scholar
  72. 72.
    Zong Q, Wang Y, Zou H, et al. New magnetospheric substorm injection monitor: Image electron spectrometer on board a chinese navigation IGSO satellite. Space Weather, 2018, 16: 121–125CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hong Zou
    • 1
  • YuGuang Ye
    • 1
  • QiuGang Zong
    • 1
  • HongFei Chen
    • 1
  • JiQing Zou
    • 1
  • Jiang Chen
    • 1
  • WeiHong Shi
    • 1
  • XiangQian Yu
    • 1
  • WeiYing Zhong
    • 1
  • YongFu Wang
    • 1
  • XuZhi Zhou
    • 1
  • YiXin Hao
    • 1
  • XingRan Chen
    • 1
  • XiangHong Jia
    • 2
  • Feng Xu
    • 2
  • SiPei Shao
    • 3
  • Bo Wang
    • 3
  • XiaoYun Hao
    • 3
  • XiaoXin Zhang
    • 4
  1. 1.Institute of Space Physics and Applied TechnologyPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Space Medicine Fundamentals and ApplicationChinese Astronaut Research and Training CenterBeijingChina
  3. 3.Shandong Aerospace Electro-technologyYantaiChina
  4. 4.Key Laboratory of Space WeatherNational Center for Space WeatherBeijingChina

Personalised recommendations