Advertisement

Science China Technological Sciences

, Volume 62, Issue 4, pp 559–568 | Cite as

Regulation of osteoblast functions on titanium surfaces with different micro/nanotopographies and compositions

  • Peng He
  • XiaoLan Wang
  • ChengYun Ning
  • XiaoWei Liu
  • Mei Li
  • HaiDong Xu
  • GuoDong Guo
  • GuangPing Mao
  • Gang Liu
  • Bin XuEmail author
  • Yu ZhangEmail author
  • JianNing ZhaoEmail author
Article
  • 20 Downloads

Abstract

Surface modification of medical implants is considered as an effective method to improve cellular behaviors and the integration of tissues with materials. Titanium (Ti)-based materials with four different micro/nano-structures and compositions were prepared by acid etching, electrochemical anodization and alkali-heat treatment. The surface morphologies and compositions of the different surface-modified Ti materials were characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The effects of the micro/nano structured and compositions of the surfaces on cellular responses were investigated in vitro by observing the morphology, adhesion, proliferation and osteogenic differentiation of osteoblasts. To further investigate the underlying mechanisms, an RT-PCR assay was performed to analyze the expression levels of cell adhesion-related genes. Our results indicated that the nanosized structure and anatase composition could promote the adhesion and proliferation of MC3T3-E1 pre-osteoblast, as well as alkaline phosphatase activity and extracellular matrix mineralization via the integrin-FAK signaling pathway. Taken together, our innovation presented in this work demonstrated that the surface nano-structure design and composition of biomedical implants can be modified of for future orthopaedic applications.

Keywords

osteoblast functions micro/nanotopography composition titanium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11431_2018_9313_MOESM1_ESM.doc (1 mb)
Regulation of osteoblast functions on titanium surfaces with different micro/nanotopographies and compositions

References

  1. 1.
    Chen W, Shen X, Hu Y, et al. Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROSinduced cells damage and improvement of osteogenesis. Biomaterials, 2017, 114: 82–96CrossRefGoogle Scholar
  2. 2.
    Neoh K G, Hu X, Zheng D, et al. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials, 2012, 33: 2813–2822CrossRefGoogle Scholar
  3. 3.
    Sundfeldt M, Carlsson L V, Johansson C B, et al. Aseptic loosening, not only a question of wear: A review of different theories. Acta Orthopaedica, 2006, 77: 177–197CrossRefGoogle Scholar
  4. 4.
    Boos C, Fink K, Stomberg P, et al. Der Einfluss der Knochenmineraldichte und des Verankerungsverfahrens auf die Primärstabilität von zementfrei implantierten Tibiakomponenten/The influence of bone quality and the fixation procedure on the primary stability of cementless implanted tibial plateaus. Biomedizinische Technik/BioMed Eng, 2008, 53: 70–76CrossRefGoogle Scholar
  5. 5.
    Ning C, Yu P, Zhu Y, et al. Built-in microscale electrostatic fields induced by anatase-rutile-phase transition in selective areas promote osteogenesis. NPG Asia Mater, 2016, 8: e243Google Scholar
  6. 6.
    Chen L, Li J A, Chang J W, et al. Mg-Zn-Y-Nd coated with citric acid and dopamine by layer-by-layer self-assembly to improve surface biocompatibility. Sci China Technol Sci, 2018, 61: 1228–1237CrossRefGoogle Scholar
  7. 7.
    Brammer K S, Oh S, Frandsen C J, et al. Nanotube surface triggers increased chondrocyte extracellular matrix production. Mater Sci Eng-C, 2010, 30: 518–525CrossRefGoogle Scholar
  8. 8.
    Bsat S, Yavari S A, Munsch M, et al. Effect of alkali-acid-heat chemical surface treatment on electron beam melted porous titanium and its apatite forming ability. Materials, 2015, 8: 1612–1625CrossRefGoogle Scholar
  9. 9.
    Tan G, Tan Y, Ni G, et al. Controlled oxidative nanopatterning of microrough titanium surfaces for improving osteogenic activity. J Mater Sci-Mater Med, 2014, 25: 1875–1884CrossRefGoogle Scholar
  10. 10.
    Wang X, Gittens R A, Song R, et al. Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Acta Biomater, 2012, 8: 878–885CrossRefGoogle Scholar
  11. 11.
    Huang S, Peng W, Ning C, et al. Nanostructure transition on anodic titanium: structure control via a competition strategy between electrochemical oxidation and chemical etching. J Phys Chem C, 2012, 116: 22359–22364CrossRefGoogle Scholar
  12. 12.
    Li M, Ma Z, Zhu Y, et al. Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against staphylococcus aureus. Adv Healthcare Mater, 2016, 5: 557–566CrossRefGoogle Scholar
  13. 13.
    Hao J, Li Y, Li B, et al. Biological and mechanical effects of micronanostructured titanium surface on an osteoblastic cell line in vitro and osteointegration in vivo. Appl Biochem Biotechnol, 2017, 183: 280–292CrossRefGoogle Scholar
  14. 14.
    Cantini M, Gomide K, Moulisova V, et al. Vitronectin as a micromanager of cell response in material-driven fibronectin nanonetworks. Adv Biosys, 2017, 1: 1700047CrossRefGoogle Scholar
  15. 15.
    Roach P, Farrar D, Perry C C. Surface tailoring for controlled protein adsorption: Effect of topography at the nanometer scale and chemistry. J Am Chem Soc, 2006, 128: 3939–3945CrossRefGoogle Scholar
  16. 16.
    Zhou J, Han Y, Lu S. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings. IJN, 2014, 9: 1243–1260Google Scholar
  17. 17.
    Wang K, Bruce A, Mezan R, et al. Nanotopographical modulation of cell function through nuclear deformation. ACS Appl Mater Interfaces, 2016, 8: 5082–5092CrossRefGoogle Scholar
  18. 18.
    He J, Zhou W, Zhou X, et al. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci-Mater Med, 2008, 19: 3465–3472CrossRefGoogle Scholar
  19. 19.
    Albuschies J, Vogel V. The role of filopodia in the recognition of nanotopographies. Sci Rep, 2013, 3: 1658CrossRefGoogle Scholar
  20. 20.
    Ni S, Li C, Ni S, et al. Understanding improved osteoblast behavior on select nanoporous anodic alumina. Intl J Nanomed, 2014, 9: 3325CrossRefGoogle Scholar
  21. 21.
    Swan E E L, Popat K C, Grimes C A, et al. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J Biomed Mater Res, 2005, 72A: 288–295Google Scholar
  22. 22.
    Xin T, Greco V, Myung P. Hardwiring stem cell communication through tissue structure. Cell, 2016, 164: 1212–1225CrossRefGoogle Scholar
  23. 23.
    Oh S, Brammer K S, Li Y S J, et al. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA, 2009, 106: 2130–2135CrossRefGoogle Scholar
  24. 24.
    Han Y, Zhou J, Lu S, et al. Enhanced osteoblast functions of narrow interligand spaced Sr-HA nano-fibers/rods grown on microporous titania coatings. RSC Adv, 2013, 3: 11169–11184CrossRefGoogle Scholar
  25. 25.
    Strohmeyer N, Bharadwaj M, Costell M, et al. Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second. Nat Mater, 2017, 16: 1262–1270CrossRefGoogle Scholar
  26. 26.
    Qian M, Lu Z, Chen C, et al. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia. IJN, 2016, 11: 5057–5066CrossRefGoogle Scholar
  27. 27.
    Zhou Q, Castañeda Ocampo O, Guimarães C F, et al. Screening platform for cell contact guidance based on inorganic biomaterial micro/nanotopographical gradients. ACS Appl Mater Interfaces, 2017, 9: 31433–31445CrossRefGoogle Scholar
  28. 28.
    Chien F C, Dai Y H, Kuo C W, et al. Flexible nanopillars to regulate cell adhesion and movement. Nanotechnology, 2016, 27: 475101CrossRefGoogle Scholar
  29. 29.
    Dumbauld D W, Shin H, Gallant N D, et al. Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions. J Cell Physiol, 2010, 275Google Scholar
  30. 30.
    Omachi T, Ichikawa T, Kimura Y, et al. Vinculin association with actin cytoskeleton is necessary for stiffness-dependent regulation of vinculin behavior. PLoS ONE, 2017, 12: e0175324Google Scholar
  31. 31.
    Matsuzawa M, Arai C, Nomura Y, et al. Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the αvβ3 integrin/FAK/PI3K/Akt pathway. J Periodont Res, 2015, 50: 855–863CrossRefGoogle Scholar
  32. 32.
    Visavadiya N P, Keasey M P, Razskazovskiy V, et al. Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal, 2016, 14: 32CrossRefGoogle Scholar
  33. 33.
    Lipski A M, Pino C J, Haselton F R, et al. The effect of silica nanoparticle- modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials, 2008, 29: 3836–3846CrossRefGoogle Scholar
  34. 34.
    Sandbo N, Smolyaninova L V, Orlov S N, et al. Control of myofibroblast differentiation and function by cytoskeletal signaling. Biochem Moscow, 2016, 81: 1698–1708CrossRefGoogle Scholar
  35. 35.
    Li M, Yang X, Wang W, et al. Evaluation of the osteo-inductive potential of hollow three-dimensional magnesium-strontium substitutes for the bone grafting application. Mater Sci Eng-C, 2016, 73: 347–356CrossRefGoogle Scholar
  36. 36.
    Cha K J, Hong J M, Cho D W, et al. Enhanced osteogenic fate and function of MC3T3-E1 cells on nanoengineered polystyrene surfaces with nanopillar and nanopore arrays. Biofabrication, 2013, 5: 025007CrossRefGoogle Scholar
  37. 37.
    Wei Y, Mo X, Zhang P, et al. Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array. ACS Nano, 2017, 11: 5915–5924CrossRefGoogle Scholar
  38. 38.
    Xu J, Chen H, Li X, et al. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase. J Biol Chem, 2012, 287: 26200–26212CrossRefGoogle Scholar
  39. 39.
    Gongadze E, Kabaso D, Bauer S, et al. Adhesion of osteoblasts to a nanorough titanium implant surface. Intl J Nanomed, 2011, 6: 1801–1816Google Scholar
  40. 40.
    Siebers M C, ter Brugge P J, Walboomers X F, et al. Integrins as linker proteins between osteoblasts and bone replacing materials: A critical review. Biomaterials, 2005, 26: 137–146CrossRefGoogle Scholar
  41. 41.
    Rosa A L, Kato R B, Castro Raucci L M S, et al. Nanotopography drives stem cell fate toward osteoblast differentiation through α1-β1 integrin signaling pathway. J Cell Biochem, 2014, 115: 540–548CrossRefGoogle Scholar
  42. 42.
    Wei M, Li S, Le W. Nanomaterials modulate stem cell differentiation: Biological interaction and underlying mechanisms. J Nanobiotechnol, 2017, 15: 75CrossRefGoogle Scholar
  43. 43.
    Smith L A, Liu X, Hu J, et al. The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials, 2010, 31: 5526–5535CrossRefGoogle Scholar
  44. 44.
    Simann M, Le Blanc S, Schneider V, et al. Canonical FGFs prevent osteogenic lineage commitment and differentiation of human bone marrow stromal cells via erk1/2 signaling. J Cell Biochem, 2017, 118: 263–275CrossRefGoogle Scholar
  45. 45.
    Mahmood M, Li Z, Casciano D, et al. Nanostructural materials increase mineralization in bone cells and affect gene expression through miRNA regulation. J Cellular Mol Med, 2011, 15: 2297–2306CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OrthopedicsNanjing General Hospital of Nanjing Military Command of PLANanjingChina
  2. 2.Department of Orthopedics, Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
  3. 3.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations