Advertisement

Science China Technological Sciences

, Volume 61, Issue 12, pp 1959–1966 | Cite as

Effect of radial heat conduction on effective thermal conductivity of carbon nanotube bundles

  • JianLi WangEmail author
  • YaMei Song
  • YuFeng Zhang
  • YuHan Hu
  • Hang Yin
  • YunFeng Gu
  • Re Xia
  • YunFei Chen
Article
  • 30 Downloads

Abstract

The effect of the radial heat conduction on the effective thermal conductivity of carbon nanotube (CNT) bundles is studied by the nonequilibrium molecular dynamics (NEMD) method. The hexagonal CNT bundle consists of seven (10, 10) single-walled carbon nanotubes (SWCNTs). The radial heat conduction is induced by creating the vacancy defects in some segments of the constituent CNTs. Combined with the temperature differences and the inter-tube thermal resistances at the different segments, the radial heat flow in the CNT bundle is calculated. The maximum percentage of the radial heat flow is less than 7% with the presence of four defective CNTs, while the resultant decrement of the effective thermal conductivity of the bundle is about 18%. The present results indicate that the radial heat flow can significantly diminish the axial heat conduction in the CNT bundles, which probably explains the smaller effective thermal conductivity in the CNT assemblies compared to that of the individual CNTs.

Keywords

axial thermal conductivity carbon nanotube bundle inter-tube thermal resistance radial heat flow 

References

  1. 1.
    Dresselhaus M S, Dresselhaus G, Charlier J C, et al. Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc A-Math Phys Eng Sci, 2004, 362: 2065–2098CrossRefGoogle Scholar
  2. 2.
    Li Y H, Wu Z H, Xie H Q, et al. Study on the performance of TEG with heat transfer enhancement using graphene-water nanofluid for a TEG cooling system. Sci China Technol Sci, 2017, 60: 1168–1174CrossRefGoogle Scholar
  3. 3.
    Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 2001, 87: 215502CrossRefGoogle Scholar
  4. 4.
    Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett, 2005, 95: 065502CrossRefGoogle Scholar
  5. 5.
    Yu C, Shi L, Yao Z, et al. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 2005, 5: 1842–1846CrossRefGoogle Scholar
  6. 6.
    Shi L, Li D, Yu C, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transfer, 2003, 125: 881–888CrossRefGoogle Scholar
  7. 7.
    Aliev A E, Guthy C, Zhang M, et al. Thermal transport in MWCNT sheets and yarns. Carbon, 2007, 45: 2880–2888CrossRefGoogle Scholar
  8. 8.
    Prasher R S, Hu X J, Chalopin Y, et al. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett, 2009, 102: 105901CrossRefGoogle Scholar
  9. 9.
    Jakubinek M B, White M A, Li G, et al. Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays. Carbon, 2010, 48: 3947–3952CrossRefGoogle Scholar
  10. 10.
    Behabtu N, Young C C, Tsentalovich D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339: 182–186CrossRefGoogle Scholar
  11. 11.
    Volkov A N, Salaway R N, Zhigilei L V. Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes. J Appl Phys, 2013, 114: 104301CrossRefGoogle Scholar
  12. 12.
    Varshney V, Patnaik S S, Roy A K, et al. Modeling of thermal conductance at transverse cnt-cnt interfaces. J Phys Chem C, 2010, 114: 16223–16228CrossRefGoogle Scholar
  13. 13.
    Liu J, Alhashme M, Yang R. Thermal transport across carbon nanotubes connected by molecular linkers. Carbon, 2012, 50: 1063–1070CrossRefGoogle Scholar
  14. 14.
    Park J G, Cheng Q, Lu J, et al. Thermal conductivity of MWCNT/ epoxy composites: The effects of length, alignment and functionalization. Carbon, 2012, 50: 2083–2090CrossRefGoogle Scholar
  15. 15.
    Gharib-Zahedi M R, Tafazzoli M, Böhm M C, et al. Transversal thermal transport in single-walled carbon nanotube bundles: Influence of axial stretching and intertube bonding. J Chem Phys, 2013, 139: 184704CrossRefGoogle Scholar
  16. 16.
    Che J, Cagin T, Goddard III W A. Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11: 65–69CrossRefGoogle Scholar
  17. 17.
    Park J, Bifano M F P, Prakash V. Sensitivity of thermal conductivity of carbon nanotubes to defect concentrations and heat-treatment. J Appl Phys, 2013, 113: 034312CrossRefGoogle Scholar
  18. 18.
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19CrossRefzbMATHGoogle Scholar
  19. 19.
    Hu G J, Cao B Y. Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling. J Appl Phys, 2013, 114: 224308CrossRefGoogle Scholar
  20. 20.
    Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B, 2002, 65: 144306CrossRefGoogle Scholar
  21. 21.
    Lindsay L, Broido D A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B, 2010, 81: 205441CrossRefGoogle Scholar
  22. 22.
    Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B, 2000, 62: 13104–13110CrossRefGoogle Scholar
  23. 23.
    Yan X H, Xiao Y, Li Z M. Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes. J Appl Phys, 2006, 99: 124305CrossRefGoogle Scholar
  24. 24.
    Zhong H, Lukes J R. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys Rev B, 2006, 74: 125403CrossRefGoogle Scholar
  25. 25.
    Shiomi J, Maruyama S. Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes. Jpn J Appl Phys, 2008, 47: 2005–2009CrossRefGoogle Scholar
  26. 26.
    Cao B Y, Li Y W. A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics. J Chem Phys, 2010, 133: 024106CrossRefGoogle Scholar
  27. 27.
    Jiang J W, Chen J, Wang J S, et al. Edge states induce boundary temperature jump in molecular dynamics simulation of heat conduction. Phys Rev B, 2009, 80: 052301CrossRefGoogle Scholar
  28. 28.
    Cao A, Qu J. Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys, 2012, 112: 013503CrossRefGoogle Scholar
  29. 29.
    Balasubramanian G, Puri I K. Heat conduction across a solid-solid interface: understanding nanoscale interfacial effects on thermal resistance. Appl Phys Lett, 2011, 99: 013116CrossRefGoogle Scholar
  30. 30.
    Liu J, Li T, Hu Y, et al. Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs. Nanoscale, 2017, 9: 1496–1501CrossRefGoogle Scholar
  31. 31.
    Zhan H, Zhang Y, Bell J M, et al. Suppressed thermal conductivity of bilayer graphene with vacancy-initiated linkages. J Phys Chem C, 2015, 119: 1748–1752CrossRefGoogle Scholar
  32. 32.
    Xu Z, Buehler M J. Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano, 2009, 3: 2767–2775CrossRefGoogle Scholar
  33. 33.
    Wang J, Chen D, Wallace J, et al. Introducing thermally stable intertube defects to assist off-axial phonon transport in carbon nanotube films. Appl Phys Lett, 2014, 104: 191902CrossRefGoogle Scholar
  34. 34.
    Venkateswaran U D, Rao A M, Richter E, et al. Probing the singlewall carbon nanotube bundle: Raman scattering under high pressure. Phys Rev B, 1999, 59: 10928–10934CrossRefGoogle Scholar
  35. 35.
    Shenogin S, Bodapati A, Xue L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett, 2004, 85: 2229–2231CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • JianLi Wang
    • 1
    Email author
  • YaMei Song
    • 1
  • YuFeng Zhang
    • 1
  • YuHan Hu
    • 1
  • Hang Yin
    • 1
  • YunFeng Gu
    • 2
  • Re Xia
    • 3
  • YunFei Chen
    • 1
  1. 1.Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical InstrumentsSoutheast UniversityNanjingChina
  2. 2.College of Electronic and Mechanical EngineeringNanjing Forestry UniversityNanjingChina
  3. 3.Key Laboratory of Hydraulic Machinery Transients (Wuhan University)Ministry of EducationWuhanChina

Personalised recommendations